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SIZE OF DOT PRODUCT SETS DETERMINED BY
PAIRS OF SUBSETS OF VECTOR SPACES OVER

FINITE FIELDS

Doowon Koh* and Youngjin Pi**

Abstract. In this paper we study the cardinality of the dot prod-
uct set generated by two subsets of vector spaces over finite fields.
We notice that the results on the dot product problems for one set
can be simply extended to two sets. Let E and F be subsets of the
d-dimensional vector space Fd

q over a finite field Fq with q elements.
As a new result, we prove that if E and F are subsets of the parab-
oloid and |E||F | ≥ Cqd for some large C > 1, then |Π(E, F )| ≥ cq
for some 0 < c < 1. In particular, we find a connection between the
size of the dot product set and the number of lines through both
the origin and a nonzero point in the given set E. As an application
of this observation, we obtain more sharpened results on the gener-
alized dot product set problems. The discrete Fourier analysis and
geometrical observation play a crucial role in proving our results.

1. Introduction

How many distinct distances can be determined by a finite subset of
Rd? In 1946, this question was addressed by Erdős [3]. This problem
is well known as the Erdős distance problem in the Euclidean space.
More generally, given E, F ⊂ Rd with |E|, |F | < ∞, one may ask for the
cardinality of the distance set ∆(E,F ) in terms of the sizes of E and F ,
where | · | denotes the cardinality of a finite set of Rd and the distance
set ∆(E, F ) is defined by

∆(E, F ) =
{√

(x1 − y1)2 + · · ·+ (xd − yd)2 : x ∈ E, y ∈ F
}

.
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If E = F, then we shall write ∆(E) for ∆(E, F ). The first nontrivial
result on this problem was obtained by Erdős [3]. He proved that if
E ⊂ Rd, then |∆(E)| ≥ c|E|1/d for some constant 0 < c < 1 independent
of |E|. In addition, he conjectured that for every ε > 0 there exists cε > 0
such that |∆(E)| ≥ cε|E|2/d−ε. The conjecture on the plane was recently
solved by Guth and Katz [6] but it remains open for higher dimensions
(see, for example, [14, 11, 13]).

As a continuous version of the Erdős distance problem, the Falconer
distance problem has been studied. The Falconer distance conjecture
says that if E is a compact subset of Rd, d ≥ 2, and the Hausdorff
dimension of E is greater than d/2, then the distance set ∆(E) has a
positive Lebesgue measure. Since this conjecture was first addressed by
Falconer [5], much attention has been given to this problem but it has
not been solved for any dimensions. Using the decay estimate of the
Fourier transform on the sphere, Falconer [5] firstly obtained that

dimH(E) >
d + 1

2
=⇒ L(∆(E)) > 0,

where dimH(E) denotes the Hausdorff dimension of E ⊂ Rd and L(∆(E))
denotes one-dimensional Lebesgue measure of the distance set ∆(E).
The Falconer’s result was generalized by Mattila who proved in [12]
that for any compact sets E, F ⊂ Rd,

dimH(E) + dimH(F ) > d + 1 =⇒ L(∆(E,F )) > 0.

The currently best known results on the Falconer problem are due to
Wolff [15] for two dimensions and Erdog̃an [4] for higher dimensions.
Their results say that if E ⊂ Rd, d ≥ 2, with dimH(E) > d/2+1/3, then
L(∆(E)) > 0.

In recent years, the Erdős-Falconer distance problems have been re-
constructed in the finite field setting. Let Fd

q denote the d-dimensional
vector space over a finite field Fq with q elements. Throughout the pa-
per, we always assume that the characteristic of Fq is greater than two.
Given E, F ⊂ Fd

q , d ≥ 2, the distance set, denoted by D(E,F ), is defined
by

D(E, F ) = {‖x− y‖ ∈ Fq : x ∈ E, y ∈ F},
where ‖α‖ = α2

1 + · · · + α2
d for α = (α1, . . . , αd) ∈ Fd

q . We point out
that the function ‖ · ‖ on Fd

q is not a standard norm but its image
is invariant under the rotations in Fd

q . The Erdős distance problem in
the finite field setting is to find the connection between |D(E,F )| and
cardinalities of E, F ⊂ Fd

q . In the prime field setting, the Erdős distance
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problem in two dimensions was initially posed and studied by Bourgain-
Katz-Tao [1]. In 2007, Iosevich and Rudnev [8] developed the problem
in arbitrary dimensional vector spaces over general finite fields. Using
the Kloosterman sum estimate, Iosevich and Rudnev [8] obtained that
if E ⊂ Fd

q , then

(1.1) |D(E, E)| Àc min

{
q,
|E|
q

d−1
2

}
.

Remark 1.1. Here and throughout this paper, the notation A Àc B
for A,B > 0 means that there exists a constant 0 < c < 1 depending
only on the dimension d such that A ≥ cB. On the other hand, we shall
use the notation A ÀC B to indicate that there exists a sufficient large
constant C > 1 depending only on the dimension d such that A ≥ CB.
The constants 0 < c < 1 and C > 1 may change from one line to another
line but they are independent of the size of the underlying finite field
Fq. We also write B ¿C A for A Àc B. A ∼ B means that there exist
constants 0 < c < 1, 1 < C such that cB ≤ A ≤ CB, where c, C depend
only on the dimension d.

As a finite field version of the Falconer distance problem, Iosevich
and Rudnev [8] conjectured that if E ⊂ Fd

q with |E| ÀC qd/2, then
|D(E, E)| Àc q. As a corollary of (1.1), they obtained that |D(E, E)| Àc

q as long as |E| ÀC q(d+1)/2. The authors in [7] constructed arithmetic
examples which show that the conjecture by Iosevich and Rudnev is
not true in odd dimensions and the exponent (d + 1)/2 gives a sharp
result on the Falconer distance problem in odd dimensional vector spaces
over Fq. However, it has been believed that the conjecture may be true
in even dimensions, in part because the authors in [2] recently showed
that if E ⊂ F2

q with |E| ÀC q4/3, then |D(E, E)| Àc q. When d = 2,
the exponent 4/3 is better than the exponent (d + 1)/2 which gives a
sharp exponent in odd dimensions. This result for dimension two was
generalized by Koh and Shen [9] who proved that if E, F ⊂ F2

q with
|E||F | ÀC q8/3, then |D(E, F )| Àc q. In [10], they also stated the
following conjecture which generalizes the conjecture originally stated
in [8] for even dimensions.

Conjecture 1.2. Let d ≥ 2 be an even integer. Suppose E, F ⊂ Fd
q .

If |E||F | ÀC qd, then |D(E, F )| Àc q.

This conjecture has not been solved but there are some specific sets
which yield the conclusion of the conjecture for any dimensions d ≥ 2.
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For example, Iosevich and Rudnev [8] showed that the conclusion of
the conjecture holds if E = F and E is a Salem set. Here, we recall
that a set E ⊂ Fd

q is called a Salem set if |Ê(m)| ¿C

√
|E|/qd for all

m ∈ Fd
q \ {(0, . . . , 0)}. Considering the number of vectors determined

by two sets E, F ⊂ Fd
q , Koh and Shen [9] deduced that if one of sets

E, F ⊂ Fd
q is a Salem set, then the conclusion of Conjecture 1.2 follows

for any dimensions d ≥ 2.
By analogy with the distance set D(E,F ), if E, F ⊂ Fd

q , then one can
define a set of dot products as

Π(E, F ) = {x · y ∈ Fq : x ∈ E, y ∈ F}.
In the case when E = F ⊂ Fd

q , the authors in [7] investigated the
cardinality of |Π(E,F )|. They proved the following result.

Proposition 1.3. Let E ⊂ Fd
q . If |E| ÀC q(d+1)/2, then

|Π(E, E)| Àc q.

In addition, they provided an example to show that the exponent
(d + 1)/2 in Proposition 1.3 can not be improved on a general set E.
However, they made a remarkable observation that if E lies on a unit
sphere, then Proposition 1.3 can be improved. More precisely, they
proved the following.

Proposition 1.4. Let E ⊂ S1 := {x ∈ Fd
q : x2

1 + · · · + x2
d = 1}. If

|E| ÀC qd/2, then |Π(E, E)| Àc q.

As a direct application of this proposition, they deduced the following
Erdős-Falconer distance result on the unit sphere.

Proposition 1.5. Let S1 = {x ∈ Fd
q : x2

1 + x2
2 + · · · + x2

d = 1}. If

d ≥ 3, E ⊂ S1, and |E| ÀC qd/2, then |D(E, E)| Àc q.

This proposition implies that the conclusion of Conjecture 1.2 holds
for the dimensions d ≥ 3 if the set E is restricted to the unit sphere.

1.1. Purpose of this paper

For each x ∈ Fd∗
q , define

(1.2) lx = {sx ∈ Fd
q : s ∈ F∗q},

where we denote Fd∗
q = Fd

q \ {(0, . . . , 0)} for d ≥ 2, and F∗q = Fq \ {0}.
Estimating maxx∈Fd∗

q
|E ∩ lx| was one of the most important ingredients

in proving Propositions 1.3, 1.4, and 1.5. One of the purposes of this
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paper is to announce that such an idea enables us to extend results of
aforementioned propositions to the general dot product set Π(E, F ). In
particular, we prove that the conclusion of Proposition 1.4 still holds in
the case when the unit sphere S1 is replaced by the paraboloid P :=
{x ∈ Fd

q : x2
1 + · · ·+ x2

d−1 = xd}. Furthermore, we observe that if one of
the sets E, F is a Salem set, then we are able to obtain extremely good
results on the generalized dot product set problem.

The other purpose of this paper is to introduce a new point of view in
deriving the results on generalized dot product sets . Roughly speaking,
we relate the dot product problem to estimation of the number of lines
containing both the origin and an element in a set E \ {(0, . . . , 0)} ⊂
Fd

q . As a result, we improve statements of aforementioned propositions
for general two sets E, F ⊂ Fd

q . In addition, we classify certain class
of the sets E, F ⊂ Fd

q which yield much better result than that of
Proposition 1.3. For example, assuming that the number of lines both
passing through the origin and intersecting with E \ {(0, . . . , 0)} (or
F \ {(0, . . . , 0)}) is much greater than |E|/q (or |F |/q), we shall see that
the result of Proposition 1.3 can be improved.

2. Preliminaries

Discrete Fourier analysis is considered as one of the most useful tools
in studying problems in the finite field setting. In this section, we briefly
review it and derive lemmas which are essential in proving our results.

2.1. Discrete Fourier analysis

We shall denote by ψ a nontrivial additive character of Fq. All results
in this paper are independent of the choice of the character ψ. Recall
that ψ : Fq → {u ∈ C : |u| = 1} is a group homomorphism. The
orthogonality relation of ψ yields that

∑

x∈Fd
q

ψ(m · x) =
{

0 if m 6= (0, . . . , 0)
qd if m = (0, . . . , 0),

where m · x denotes the usual dot-product notation. Given a function
f : Fd

q → C, the Fourier transform of the function f is defined by

f̂(m) =
1
qd

∑

x∈Fd
q

f(x)ψ(−x ·m) for m ∈ Fd
q .
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Then the Plancherel theorem in this content says that
∑

m∈Fd
q

|f̂(m)|2 =
1
qd

∑

x∈Fd
q

|f(x)|2.

Thus, it is clear that if E ⊂ Fd
q , then

∑

m∈Fd
q

|Ê(m)|2 =
|E|
qd

.

Here, throughout this paper, we identify the set E ⊂ Fd
q with the char-

acteristic function on the set E.

2.2. Key lemmas related to a general dot product set Π(E, F )

Given E, F⊂F d
q , a counting function ν on Fq is defined by

ν(t) = |{(x, y) ⊂ E × F : x · y = t}|.
By the definition of the dot product set Π(E, F ), it is clear that

|E||F | =
∑

t∈Π(E,F )

1× ν(t).

Applying the Cauchy-Schwarz inequality, we see that

(2.1) |Π(E, F )| ≥ |E|2|F |2∑
t∈Fq

ν2(t)
.

Following the argument in [7], we obtain the following formula.

Lemma 2.1. Let E, F ⊂ Fd
q with (0, . . . , 0) /∈ E. Then we have

|Π(E, F )| Àc min





q,
|E||F |2

q2d−1
∑

x∈Fd∗
q

∑
s∈F∗q

E(sx)|F̂ (x)|2





,

where Fd∗
q := Fd

q \ {(0, . . . , 0)}.
Proof. Since (0, . . . , 0) /∈ E, it is enough by (2.1) to show that

∑

t∈Fq

ν2(t) ≤ |E|2|F |2
q

+ q2d−1|E|
∑

x∈Fd
q

∑

s∈F∗q
E(sx)|F̂ (x)|2.
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By the Cauchy-Schwarz inequality, it follows that for each t ∈ Fq,

ν2(t) =


∑

x∈E

∑

y∈F :x·y=t

1




2

≤ |E|
∑

x∈E


 ∑

y∈F :x·y=t

1




2

= |E|
∑

x·y=t=x·y′
E(x)F (y)F (y′).

Summing over t ∈ Fq and using the orthogonality relation of ψ, it follows
∑

t∈Fq

ν2(t) ≤ |E|q−1
∑

s∈Fq

∑

x∈E,y,y′∈F

ψ(sx · (y − y′))

= q−1|E|2|F |2 + |E|q−1
∑

s∈F∗q

∑

x∈E,y,y′∈F

ψ(sx · (y − y′)).

By the definition of the Fourier transform and a change of variables,
∑

t∈Fq

ν2(t) ≤ q−1|E|2|F |2 + q2d−1|E|
∑

x∈Fd
q ,s∈F∗q

E(x)|F̂ (sx)|2

= q−1|E|2|F |2 + q2d−1|E|
∑

x∈Fd
q ,s∈F∗q

E(sx)|F̂ (x)|2,

which completes the proof.

Definition 2.2. For E, F ⊂ Fd
q , we define

B(E, F ) =
∑

x∈Fd∗
q

∑

s∈F∗q
E(sx)|F̂ (x)|2

=
∑

x∈Fd∗
q

|E ∩ lx||F̂ (x)|2,

where lx is defined as in (1.2).

According to Lemma 2.1, a lower bound of |Π(E,F )| can be de-
termined by an upper bound of B(E,F ). More precisely we have the
following result.

Lemma 2.3. Let E, F ⊂ Fd
q . Assume that maxx∈Fd∗

q
|E ∩ lx| ¿C qβ

for some 0 ≤ β ≤ 1. Then if |E||F | ÀC qd+β, we have

|Π(E, F )| Àc q.
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Proof. Without a loss of generality, we may assume that (0, . . . , 0) /∈
E. Since maxx∈Fd∗

q
|E∩lx| ¿C qβ, it follows from the Plancherel theorem

that
B(E, F ) ¿C qβ

∑

x∈Fd
q

|F̂ (x)|2 = qβ−d|F |.

Combining this with Lemma 2.1, we conclude that

|Π(E, F )| Àc min
{

q,
|E||F |
qd+β−1

}
,

which implies the statement of the lemma.

3. Results on the generalized dot product sets

In this section, we first collect results on the generalized dot product
set, which can be obtained by a direct application of Lemma 2.3 or
Lemma 2.1. For example, we will be able to simply generalize the results
of Propositions 1.3, 1.4, and 1.5. As a core part of this section, we derive
a dot product result on subsets of the paraboloid, which may not be
obtained by a direct application of Lemma 2.3.

3.1. Direct consequences of Lemma 2.3

The general version of Proposition 1.3 is as follows.

Theorem 3.1. Let E, F ⊂ Fd
q . If |E||F | ÀC qd+1, then we have

|Π(E, F )| Àc q.

Proof. Since every line contains exactly q points, it is clear that

max
x∈Fd∗

q

|E ∩ lx| ≤ q.

Thus, the result follows immediately by using Lemma 2.3 with β = 1.

The following theorem is a generalization of Proposition 1.4.

Theorem 3.2. Let F ⊂ Fd
q and E ⊂ Sj := {x ∈ Fd

q : x2
1 + · · ·+ x2

d =
j ∈ F∗q}. Then if |E||F | ÀC qd, we have |Π(E, F )| Àc q.

Proof. Since j 6= 0, it follows that

max
x∈Fd∗

q

|E ∩ lx| ≤ 2.

Therefore, the statement of the theorem follows by applying Lemma 2.3
with β = 0.
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We now give the generalization of Proposition 1.5 .

Theorem 3.3. Let Sj = {x ∈ Fd
q : x2

1 + x2
2 + · · ·+ x2

d = j}. Suppose
that E ⊂ Si and F ⊂ Sj for some i, j ∈ F∗q . Then if d ≥ 3, and |E||F | ÀC

qd, we have |D(E, F )| Àc q.

Proof. Notice that if x ∈ E ⊂ Si and y ∈ F ⊂ Sj , then

‖x− y‖ = x · x− 2x · y + y · y = i + j − 2x · y.

Thus, we see that |D(E, F )| = |Π(E, F )| and it suffices to prove that
|Π(E, F )| Àc q as long as |E||F | ÀC qd. However, this follows immedi-
ately from Theorem 3.2.

Now we address a result on the dot product set Π(E, F ) in the case
when one of sets E,F ⊂ Fd

q is a Salem set. Recall that a set F ⊂ Fd
q is

a Salem set if |F̂ (m)| ¿C q−d
√
|F | for all m 6= (0, . . . , 0).

Theorem 3.4. Let E,F ⊂ Fd
q . If F is a Salem set and |F | ÀC q,

then
|Π(E, F )| Àc q.

Proof. Notice that we may assume that (0, . . . , 0) /∈ E. Since F is a
Salem set, we see that

max
x∈Fd∗

q

|F̂ (x)|2 ¿C q−2d|F |.

It therefore follows that

B(E, F ) ¿C q−2d|F |
∑

x∈Fd∗
q

∑

s∈F∗q
E(sx) < q−2d|F ||E|q = q1−2d|E||F |.

By this and Lemma 2.1, we obtain that

|Π(E, F )| Àc min{q, |F |},
which implies the statement of the theorem.

3.2. Dot product sets determined by subsets of the paraboloid

In the finite field setting, the paraboloid in Fd
q , denoted by P , is

defined by
P = {x ∈ Fd

q : x2
1 + · · ·+ x2

d−1 = xd},
which is an analog of the Euclidean paraboloid.

Unlike the sphere Sj with nonzero radius, the paraboloid P ⊂ Fd
q , d ≥

3, contains lines through the origin. For example, the set H := {x ∈ P :
xd = 0} consists of some of lines through the origin. Thus, if E ⊂ P
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contains some of such lines, then maxx∈Fd∗
q
|E ∩ lx| = q− 1. In this case,

if we simply use Lemma 2.3 , then we only get that if |E||F | ÀC qd+1,
then |Π(E,F )| Àc q. This result is much weaker than the dot product
result on spheres with nonzero radius, but there are no known good
results for sets in the paraboloid. In this subsection, we prove that if
E, F ⊂ P and |E||F | ÀC qd, then |Π(E, F )| Àc q. We begin with a
definition. Let π : Fd

q → Fd−1
q be a projection map defined as

π(x) = (x1, . . . , xd−1) for x = (x1, . . . , xd−1, xd).

We have the following result.

Lemma 3.5. Let E ⊂ P and F ⊂ Fd
q . If |E||π(F )| ÀC qd, then

|Π(E, F )| Àc q.

Proof. Write that E = G ∪B where

G = {x ∈ E : xd 6= 0} and B = {x ∈ E : xd = 0}.
We may assume that either |G| ≥ |E|/2 or |B| ≥ |E|/2.

Case 1. Assume that |G| ≥ |E|/2. Since G ⊂ P , it is not hard to
see that |G ∩ lx| ≤ 1 for all x ∈ Fd∗

q . By Lemma 2.3, we see that if
|G||F | ÀC qd, then |Π(G, F )| Àc q. Since 2|G||F | ≥ |E||π(F )| ÀC qd,
and |Π(E, F )| ≥ |Π(G,F )|, the statement of the lemma follows.

Case 2. Assume that |B| ≥ |E|/2. By the definitions of B and the
dot product, notice that

Π(B, F ) = Π(B, π(F )× {0}) = Π(π(B), π(F ))

: = {α · β ∈ Fq : α ∈ π(B) ⊂ Fd−1
q , β ∈ π(F ) ⊂ Fd−1

q }.
Since π(B), π(F ) ⊂ Fd−1

q , we can use Theorem 3.1 for dimension d − 1
to deduce that

|Π(B, F )| = |Π(π(B), π(F ))| Àc q if |π(B)||π(F )| ÀC qd.

Since B is a subset of the paraboloid P, it is clear that |π(B)| =
|B| ≥ |E|/2, where the inequality follows by our case assumption. Since
|Π(E, F )| ≥ |Π(B,F )|, we complete the proof.

Since |Π(F )| = |F | for F ⊂ P, the following result follows immediately
from Lemma 3.5.

Theorem 3.6. Let E,F ⊂ P ⊂ Fd
q . If |E||F | ÀC qd, then we have

|Π(E, F )| Àc q.
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Remark 3.7. Let E ⊂ P ⊂ Fd
q , and F ⊂ Fd

q with |π(F )| Àc |F |/qγ

for some 0 ≤ γ ≤ 1. In this case, Lemma 3.5 implies that if |E||F | ÀC

qd+γ , then |Π(E, F )| Àc q.

Here we may have a natural question.

Question 3.8. Let E ⊂ P and F ⊂ Fd
q . Is it true that if |E||F | ÀC

qd, then |Π(E, F )| Àc q?

Considering Remark 3.7, it seems that the answer is negative. How-
ever, Theorem 3.2 says that if we replace the paraboloid P by the sphere
Sj with nonzero radius, then the answer is positive. Now, we show that
if the paraboloid P is appropriately translated, then the answer to Ques-
tion 3.8 is also positive.

Theorem 3.9. Let a ∈ Fd
q \ P := {x ∈ Fd

q : x2
1 + · · ·+ x2

d−1 = −xd}.
Suppose that E ⊂ P + a := {x + a : x ∈ P} and F ⊂ Fd

q . Then if

|E||F | ÀC qd, we have |Π(E, F )| Àc q.

Proof. By Lemma 2.3, it suffices to prove that for every a ∈ Fd
q \ P ,

and x 6= (0, . . . , 0),

(3.1) |(P + a) ∩ lx| ¿C 1,

where we recall that lx = {sx ∈ Fd∗
q : s ∈ F∗q}. Fix x ∈ P + a. Then it

follows that

(x1 − a1)2 + · · ·+ (xd−1 − ad−1)2 = xd − ad.

With this assumption, it is enough to prove that

|{s ∈ F∗q : sx ∈ P + a}| ≤ 2.

It follows from a routine algebra that if a /∈ P , then

|{s ∈ F∗q : (sx1 − a1)2 + · · ·+ (sxd−1 − ad−1)2 = sxd − ad}| ≤ 2.

Thus, the proof is complete.

Observe that (0, . . . , 0) ∈ P, but the sphere Sj for j 6= 0 or P + a for
a /∈ P does not contain (0, . . . , 0). From Theorem 3.2 and Theorem 3.9,
this observation may lead us to the following conjecture.

Conjecture 3.10. Let V = {x ∈ Fd
q : Q(x) = 0} be a variety

where Q(x) ∈ Fq[x1, . . . , xd] is a polynomial. In addition, assume that

(0, . . . , 0) /∈ V. If E ⊂ V and F ⊂ Fd
q with |E||F | ÀC qd, then we have

|Π(E, F )| Àc q.
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4. Sharpened results on the generalized dot product set

In the previous section, we deduced the results on the dot product
set by considering maxx∈Fd∗

q
|E ∩ lx|. This method may give us a sharp

result for the set E ⊂ Fd
q in the case when |E ∩ lx| ∼ |E ∩ ly| for almost

elements x, y ∈ Fd∗
q . However, it may not be efficient in the case when

the variation of |E ∩ lx| for x ∈ Fd∗
q is relatively large. In this section,

we introduce a new approach to compensate the defect of the previous
method and provide improved statements of the results in the previous
section.

Now, we derive a new formula to determine |Π(E, F )|, which is much
stronger than Lemma 2.3.

Lemma 4.1. Let E, F ⊂ Fd
q . Assume that the number of lines through

the origin and a point in E \ {(0, . . . , 0)} is at least ∼ q−α|E| for some
0 ≤ α ≤ 1. If |E||F | ÀC qd+α then there exists a set E0 ⊂ E with
|E0| ∼ q−α|E| such that

|Π(E0, F )| Àc q.

Proof. Note that we may assume that (0, . . . , 0) /∈ E. Let n be an
integer with n ∼ q−α|E|. By assumption, we may choose n lines, say
that lj , j = 1, 2, . . . , n, such that each of them contains at least one point
in E, and is also passing through the origin. For each j = 1, 2, . . . , n,
choose exactly an element xj ∈ lj ∩ E and define

E0 = {xj : j = 1, 2, . . . , n}.
Since |E0| = n ∼ q−α|E| for some 0 ≤ α ≤ 1, it suffices to prove that
|Π(E0, F )| Àc q as long as |E||F | ÀC qd+α. By the definition of E0, it
is clear that

∑
s∈F∗q E0(sx) = 1 for each x 6= (0, . . . , 0). This implies that

B(E0, F ) ≤ ∑
x∈Fd

q
|F̂ (x)|2 = q−d|F |. Now applying Lemma 2.1 with

E0, F yields that

|Π(E0, F )| Àc min
{

q,
|E0||F |
qd−1

}
.

Since |E0| ∼ q−α|E| , the statement of the theorem follows immediately
from the assumption that |E||F | ÀC qd+α.

The value α given in Lemma 4.1 must be contained in [0, 1]. For
example, if E lies on a unit sphere S1 := {x ∈ Fd

q : ‖x‖ = 1}, then α
can be taken as zero. In addition, observe that for each E \ {(0, . . . , 0)},
there are at least ∼ q−1|E| such lines, because a line contains exactly q
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points. Namely, α must be less than or equal to one. Also notice from
Lemma 4.1 that we can expect better dot product results whenever the
set E intersects with lots of such lines. In order words, the smaller α is,
the better the result is. As mentioned before, the (d+1)/2 is the optimal
exponent to obtain the conclusion of Proposition 1.3 for arbitrary set
E. Thus, the exponent d + 1 in the assumption of Theorem 3.1 is also
optimal in general. However, Lemma 4.1 illustrates that the exponent
d + 1 can be improved in the case when the set E \ {(0, . . . , 0) intersects
with at least |E|/q1−ε lines through the origin for some 0 < ε ≤ 1.

Now, we claim that Lemma 4.1 is much superior to Lemma 2.3. In-
deed, an upgraded version of Lemma 2.3 can be given by a corollary of
Lemma 4.1. More precisely, we can derive the following fact.

Lemma 4.2. Let E, F ⊂ Fd
q . Assume that maxx∈Fd∗

q
|E ∩ lx| ¿C qβ

for some 0 ≤ β ≤ 1. Then if |E||F | ÀC qd+β, there exists a set E0 ⊂ E
with |E0| ∼ q−β|E| such that

|Π(E0, F )| Àc q.

Proof. Since maxx∈Fd∗
q
|E ∩ lx| ¿C qβ, it is clear that the number

of lines through the origin and a point in E \ {(0, . . . , 0)} is at least
∼ q−β|E|. Hence, the statement of the lemma follows immediately by
Lemma 4.1.

Lemma 4.2 enables us to deduce stronger conclusion than Lemma 2.1,
because |Π(E0, F )| ≤ |Π(E, F )| for E0 ⊂ E. For example, Theorem 3.1
can be improved by the following statement.

Theorem 4.3. Let E, F ⊂ Fd
q . It |E||F | ÀC qd+1, then there exists

a set E0 ⊂ E with |E0| ∼ q−1|E| such that

|Π(E0, F )| Àc q.

Proof. Since |E ∩ lx| ≤ q, this theorem is an immediate consequence
of Lemma 4.2.

Notice that Lemma 4.2 can be also used to deduce the improved con-
clusions of Theorem 3.2 and Theorem 1.5. We close this paper with an
important remark on Theorem 4.3.

Remark 4.4. The authors in [2] studied the pinned distance sets and
proved the following strong result (Theorem 2.2 in [2]).

Proposition 4.5. Let E ⊂ Fd
q , d ≥ 2. If |E| ≥ q(d+1)/2, then there

exists a set E′ ⊂ E with |E′| Àc |E| such that if x ∈ E′, then |Π(x, E)| >
q/2, where Π(x,E) := {x · y : y ∈ E}.
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This proposition is much superior to our Theorem 4.3 in the case
when E = F. The existence of such set E′ in Proposition 4.5 was proved
by using an averaging argument. Therefore, there is no information
about how to choose an exact element x of E′ so that |Π(x,E)| Àc q.
On the other hand, the proof of our Theorem 4.3 clearly indicates how
to choose the set E0. In practice, our Theorem 4.3 can be very useful.
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