DOI QR코드

DOI QR Code

Development of a Light Extinction Coefficient Change Model according to the Growth Stage of Cucumber in a Greenhouse

온실 내 백다다기 오이의 생육단계에 따른 흡광계수 변화 모델 개발

  • Ki Beom Jeon (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University) ;
  • Jong Hwa Shin (Department of Horticulture and Breeding, College of Life Science and Biotechnology, Andong National University)
  • 전기범 (국립안동대학교 대학원 원예육종학과) ;
  • 신종화 (국립안동대학교 생명과학대학 원예육종학과)
  • Received : 2022.12.30
  • Accepted : 2023.01.16
  • Published : 2023.01.31

Abstract

Understanding the light environment in greenhouse cultivation and the light utilization characteristics of crops is important in the study of photosynthesis and transpiration. Also, as the plant grows, the form of light utilization changes. Therefore, this study aims to develop a light extinction coefficient model reflecting the plant growth. To measure the extinction coefficient, five pyranometers were installed vertically according to the height of the plant, and the light intensity by height was collected every second during the entire growing season. According to each growth stage in the early, middle, and late stages, the difference between the top and bottom light intensity tended to increase to 69%, 72%, and 81%. When leaf area index and plant height increased, the extinction coefficient decreased, and it showed an exponential decay relationship. Three-dimensional model reflecting the two growth indexes, the paraboloid had the lowest RMSE of 1.340 and the highest regression constant of 0.968. Through this study, it was possible to predict the more precise light extinction coefficient during the growing period of plants. Furthermore, it is judged that this can be utilized for predicting and analyzing photosynthesis and transpiration according to the plant height.

시설 내 작물이 이용하는 수광특성의 이해와 지속적으로 변화하는 광환경의 추적은 광합성과 증산반응 연구에서 중요하다. 또한 재배기간 동안 작물이 생장함에 따라 광이용 형태가 지속적으로 변화한다. 따라서 본 연구에서는 작물의 생육을 반영한 흡광계수 추정 모델을 개발하였다. 흡광계수의 측정을 위하여 작물의 높이에 따라 수직으로 일사량계를 5개 설치하였으며, 작물의 전 생육기간(1-85DAT) 동안 1초 단위로 측정을 하였다. 초기, 중기, 후기 각각의 생육단계에 따라 최상단 광량과 최하단의 광량의 차이가 69%, 72%, 81%로 증가하는 경향을 보였다. LAI와 초장이 증가함에 따라 흡광계수는 감소하였으며, 지수적 감소 관계를 보였다. 두 생육지표를 모두 반영한 3차원 모델에서는 Paraboloid 식이 평균 제곱근 오차(RMSE)가 1.340으로 가장 낮았고, 결정계수(R2)는 0.968로 가장 높았다. 본 연구를 통하여 작물 재배기간 동안 보다 정확한 흡광계수를 예측할 수 있게 되었고, 이는 작물의 높이에 따른 광합성 및 증산량 예측과 분석 연구에 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국스마트팜R&D재단(과제번호: 421001-03)의 지원에 의해 이루어진 것임.

References

  1. Acock B., D.A. Charles-Edwards, D.J. Fitter, D.W. Hand, L.J. Ludwig, J. Warren Wilson, and A.C. Withers 1978, The contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of two canopy models. J Exp Bot 29:815-827. https://doi.org/10.1093/jxb/29.4.815
  2. Chen J.M., J. Liu, J. Cihlar, and M.L. Goulden 1999, Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99-119. doi:10.1016/S0304-3800(99)00156-8
  3. Dufrene E., and N. Breda 1995, Estimation of deciduous forest leaf area index using direct and indirect methods. Oecologia 104:156-162. https://doi.org/10.1007/BF00328580
  4. Hara T. 1986, Effects of density and extinction coefficient on size variability in plant populations. Ann Bot 57:885-892.  https://doi.org/10.1093/oxfordjournals.aob.a087173
  5. Higashide T. 2022, Review of dry matter production and growth modelling to improve the yield of greenhouse tomatoes. Hortic J 91:247-266. doi:10.2503/hortj.UTD-R019
  6. Hirose T. 2005, Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483-494. doi:10.1093/aob/mci047
  7. Iwakiri S., and M. Inayama 1974, Studies on the canopy photosynthesis of the horticultural crops in controlled environment: (2) Distribution of percent sunlit leaf area in hedgerow cucumber canopies. J Agric Meteorol 30:17-26. https://doi.org/10.2480/agrmet.30.17
  8. Jones H.G. 1992, Plants and microclimate: a quantitative approach to environmental plant physiology, Ed 2. Cambridge University Press, Cambridge, UK, pp 31-35.
  9. Kendrick R.E., and G.H.M Kronenberg 1994, Photomorphogenesis in Plants, Ed 2. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 99-114.
  10. Loomis R.S., W.A. Williams, W.G. Duncan, A. Dovrat, and F.A. Nunez 1968, Quantitative descriptions of foliage display and light absorption in field communities of corn plants. Crop Sci 8:352-356. doi:10.2135/cropsci1968.0011183X000800030027x
  11. Monsi M., and T. Saeki 2005, On the factor light in plant communities and its importance for matter production. Ann Bot 95:549-567. doi:10.1093/aob/mci052
  12. Nederhoff E.M. 1983, Light interception of a cucumber crop at different stages of growth. Acta Hortic 148:525-534. doi:10.17660/ActaHortic.1984.148.66
  13. Nobel P.S., I.N. Forseth, and S.P. Long 1993, Canopy structure and light interception. Photosynthesis and production in a changing environment. A Field and Laboratory Manual. Springer, Dordrecht, the Netherlands, pp 79-90.
  14. Peil R.M., M.M. Gonzalez-Real, and J. Lopez-Galvez 2002, Light interception of a greenhouse cucumber crop: Measurements and modeling results. Acta Hortic 588:81-87. doi:10.17660/ActaHortic.2002.588.11
  15. Pepper G.E., R.B. Pearce, and J.J. Mock 1977, Leaf orientation and yield of maize. Crop Sci 17:883-886. doi:10.2135/cropsci1977.0011183X001700060017x
  16. Rural Development Administration (RDA) 2018, Cucumber-Agricultural technology guide 107. RDA, Korea, pp 24-25.
  17. Smith F.W., D.A. Sampson, and J.N. Long 1991, Comparison of leaf area index estimates from tree allometrics and measured light interception. For Sci 37:1682-1688. doi:10.1093/forestscience/37.6.1682
  18. Tahiri A.Z., H. Anyoji, and H. Yasuda 2006, Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize. Agric Water Manag 84:186-192. doi:10.1016/j.agwat.2006.02.002
  19. Tan C.W., P.P. Zhang, X.X. Zhou, Z.X. Wang, Z.Q. Xu, W. Mao, W.X. Li, Z.Y. Huo, W.S. Guo, and F. Yun 2020, Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law. Sci Rep 10:929. doi:10.1038/s41598-020-57750-z
  20. Turton S.M. 1985, The relative distribution of photosynthetically active radiation within four tree canopies, Cragieburn Range, New Zealand. Aust For Res 15:383-394.
  21. Uchijima Z., K. Inoue, and S. Kimura 1976, The climate in growth chamber: (6) Diffuse radiation environment in vinylhouses. J Agric Meteorol 32:117-125. https://doi.org/10.2480/agrmet.32.117
  22. Vos J., J.B. Evers, G.H. Buck-Sorlin, B. Andrieu, M. Chelle, and P.H.B. de Visser 2010, Functional-structural plant modelling: A new versatile tool in crop science. J Exp Bot 61:2101-2115. doi:10.1093/jxb/erp345