• 제목/요약/키워드: paper substrate

Search Result 2,124, Processing Time 0.035 seconds

A Study on Latch up Characteristics with Structural Design of IGBT (IGBT의 구조에 따른 래치 업 특성의 변화 양상에 관한 고찰)

  • Kang, Ey-Goo;Kim, Tae-Ik;Sung, Man-Young;Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1111-1113
    • /
    • 1995
  • To improve latch up characteristics of IGBT, this paper proposed new structure with reverse channel. IGBT proposed by this paper were designed on SOI substrate, $p^+$-substrate, and $n^+$-substrate, respectively. As a result of the simulation, we had achieved high latch up voltage and high conduction current density at IGBT with proposed structure. Latch up voltage of Conventional IGBT was 2.5V but IGBT with proposed structure was latched up at $5{\sim}94V$, respectively. And was showed high conduction current desity($10^4{\sim}10^7A/cm^2$)

  • PDF

N-Type Carbon-Nanotube MOSFET Device Profile Optimization for Very Large Scale Integration

  • Sun, Yanan;Kursun, Volkan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • Carbon-nanotube metal oxide semiconductor field effect transistor (CN-MOSFET) is a promising future device candidate. The electrical characteristics of 16 nm N-type CN-MOSFETs are explored in this paper. The optimum N-type CN-MOSFET device profiles with different number of tubes are identified for achieving the highest on-state to off-state current ratio ($I_{on}/I_{off}$). The influence of substrate voltage on device performance is also investigated in this paper. Tradeoffs between subthreshold leakage current and overall switch quality are evaluated with different substrate bias voltages. Technology development guidelines for achieving high-speed, low-leakage, area efficient, and manufacturable carbon nanotube integrated circuits are provided.

Nonlinear Adaptive Control of Fermentation Process in Stirred Tank Bioreactor

  • Kim, Sang-Bong;Kim, Hak-Kyeong;Soo, Jeong-Nam;Nguyen, Tan-Tien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.3-74
    • /
    • 2001
  • This paper proposes a nonlinear adaptive controller based on back-stepping method for tracking reference substrate concentration by manipulating dilution rate in a continuous baker´s yeast cultivating process in stirred tank bioreactor. Control law is obtained from Lyapunov control function to ensure asymptotical stability of the system. The Haldane model for the specific growth rate depending on only substrate concentration is used in this paper. Due to the uncertainty of specific growth rate, it has been modified as a function including the unknown parameter with known bounded values. The substrate concentration in the bioreactor and feed line are measured. The deviation from the reference is observed when the external disturbance such as the change of the feed is introduced to the system ...

  • PDF

Nonlinear Adaptive Control of Fermentation Process in Stirred Tank Bioreactor

  • Kim, Hak-Kyeong;Nguyen, Tan-Tien;Nam soo Jeong;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.277-282
    • /
    • 2002
  • This paper proposes a nonlinear adaptive controller based on back-stepping method for tracking reference substrate concentration by manipulating dilution rate in a continuous baker's yeast cultivating process in stirred tank bioreactor. Control law is obtained from Lyapunov control function to ensure asymptotical stability of the system. The Haldane model for the specific growth rate depending on only substrate concentration is used in this paper. Due to the uncertainty of specific growth rate, it has been modified as a function including the unknown parameter with known bounded values. The substrate concentration in the bioreactor and feed line are measured. The deviation from the reference is observed when the external disturbance such as the change of the feed is introduced to the system. The effectiveness of the proposed controller is shown through simulation results in continuous system.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate (삼원 촉매 담체의 확률론적 열피로 성능 평가)

  • Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.669-676
    • /
    • 2014
  • A three-way catalyst substrate for domestic passenger car satisfies the design criteria for exhaust gas exchange and pressure drop but does not have satisfactory thermal fatigue performance. Prefracture faults in this three-way catalyst substrate has often been discovered in vehicle repair or vehicle inspection facilities. This paper presents a thermal fatigue performance estimation method for a three-way catalyst substrate using a probabilistic strength reduction factor model. This method is superior to the thermal fatigue performance estimation method for a three-way catalyst substrate that uses a deterministic strength model.

External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions

  • Galaction, Anca-Irina;Rotaru, Roxana;Kloetzer, Lenuta;Vlysidis, Anestis;Webb, Colin;Turnea, Marius;Cascaval, Dan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1257-1263
    • /
    • 2011
  • This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.

Fabrication of thin Film Transistor on Plastic Substrate for Application to Flexible Display (Flexible 디스플레이로의 응용을 위한 플라스틱 기판 위의 박막트랜지스터의 제조)

  • 배성찬;오순택;최시영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.481-485
    • /
    • 2003
  • Amorphous silicon (a-Si:H) based TFT process has been studied at the maximum temperature of 15$0^{\circ}C$ with 25${\mu}{\textrm}{m}$ thick flexible and adhesive tape type polyimide foil substrate, which has benefit on handling a rugged, flexible plastic substrate trough sticking simply it to glass. This paper summarize the process procedure of the TFT on the plastic substrate and shows its electrical characteristics in comparison with glass substrate using primarily the ON/OFF current ratio and the field effect mobility as the quality criterion. The a-SiN:H coating layer played an important role in decreasing surface roughness of plastic substrate, so leakage current of TFT was decreased and mobility was increased. The results show that high quality a-Si:H TFTs can be fabricated on the plastic substrates through coating a rough plastic surface with a-SiN:H.

Development of Paper Blood Glucose Sensor with Minimal Hematocrit Effect (헤마토크릿 영향을 최소화한 종이 혈당센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.116-120
    • /
    • 2022
  • In this paper, we developed a paper blood glucose sensor that can minimize the effect of hematocrit. The paper blood glucose sensor has the advantage of being very simple in its production process as it is manufactured with only three printing processes on the top of the paper substrate. This glucose sensor consists of a total of six electrodes, including blood glucose measurement electrodes, hematocrit measurement electrodes, strip detection electrodes, and blood detection electrodes. A paper blood glucose sensor measures hematocrit with electrodes formed on the same sensor substrate when measuring blood glucose concentration, and compensates for the effect of hematocrit in real time to enable accurate blood glucose measurement.