Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07024

External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions  

Galaction, Anca-Irina ("Gr.T. Popa" University of Medicine and Pharmacy of Iasi, Department of Biotechnologies)
Rotaru, Roxana ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering)
Kloetzer, Lenuta ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering)
Vlysidis, Anestis (Satake Center for Grain Process Engineering, University of Manchester)
Webb, Colin (Satake Center for Grain Process Engineering, University of Manchester)
Turnea, Marius ("Gr.T. Popa" University of Medicine and Pharmacy of Iasi, Department of Biotechnologies)
Cascaval, Dan ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.12, 2011 , pp. 1257-1263 More about this Journal
Abstract
This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.
Keywords
Succinic acid fermentation; stirred bed; immobilized cells; Actinobacillus succinogenes; internal diffusion; mass transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Arikawa, Y., T. Kuroyanagi, M. Shimosaka, H. Muratsubaki, K. Enomoto, R. Kodaira, and M. Okazaki. 1999. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 87: 28-36.   DOI   ScienceOn
2 Bird, R. B., W. E. Stewart, and N. E. Lightfoot. 1960. Transport Phenomena. Wiley, New York.
3 Ca caval, D. and A. I. Galaction. 2007. The European colour of biotechnology is white. Rom. Biotechnol. Lett. 12: 3489-3494.
4 Chen, K., M. Jiang, P. Wei, J. Yao, and H. Wu. 2010. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl. Biochem. Biotechnol. 160: 477-485.   DOI   ScienceOn
5 Corona-Gonzalez, R. I., A. Bories, V. Gonzalez-Alvarez, and C. Pelayo-Ortiz. 2008. Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem. 43: 1047-1053.   DOI   ScienceOn
6 David, H., M. Akesson, and J. Nielsen. 2003. Reconstruction of the central carbon metabolism of Aspergillus niger. J. Dairy Sci. 270: 4243-4253.
7 Dorado, M. P., S. K. C. Lin, A. Koutinatis, C. Du, R. Wang, and C. Webb. 2009. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 143: 51-59.   DOI   ScienceOn
8 Estape, D., F. Godia, and C. Sola. 1992. Determination of glucose and ethanol diffusion coefficients in Ca-alginate gel. Enzyme Microbiol. Technol. 14: 396-401.   DOI   ScienceOn
9 Galaction, A. I., A. M. Lup teanu, and D. Ca caval. 2007. Bioreactors with stirred bed of immobilized cells. 1. Studies on mixing efficiency. Environ. Eng. Manag. J. 6: 101-110.
10 Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and P. Wei. 2008. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J. Chem. Technol. Biotechnol. 83: 722-729.   DOI   ScienceOn
11 Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and L. L. Zhu. 2008. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technol. 99: 1736-1742.   DOI   ScienceOn
12 McIntyre, M. and B. McNeil. 1997. Effects of elevated dissolved $CO_{2}$ levels on batch and continuous cultures of Aspergillus niger A60: An evaluation of experimental methods. Appl. Environ. Microbiol. 63: 4171-4177.
13 McKinlay, J. B., J. G. Zeikus, and C. Vieille. 2005. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656.   DOI   ScienceOn
14 Moon, S. K., Y. J. Wee, J. S. Yun, and H. W. Ryu. 2004. Production of fumaric acid using rice brain and subsequent conversion to succinic acid through a two-step process. Appl. Biochem. Biotechnol. 113-116: 834-855.
15 Perry, R. H. and C. H. Chilton. 1973. Chemical Engineers Handbook. 5th Ed. McGraw-Hill, New York.
16 Song, H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enz. Microb. Technol. 39: 352-361.   DOI   ScienceOn
17 Vicente, A. A., M. Dluhy, E. C. Ferreira, M. Mota, and J. A. Teixeira. 1998. Mass transfer properties of glucose and O2 in S. cerevisiae flocs. Biochem. Eng. J. 2: 35-43.   DOI   ScienceOn
18 Urbance, S. E., A. L. Pometto III, A. A. DiSpirito, and A. Demirci. 2003. Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol. 17: 53-65.   DOI   ScienceOn
19 Urbance, S. E., A. L. Pometto III, A. A. DiSpirito, and Y. Denli. 2004. Evaluation of succinic acid continuous and repeatbatch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Biochem. Biotechnol. 65: 664-670.
20 Van Gylswyk, N. O. 1995. Succiniciclasticum ruminis gen-nov, sp.-nov, a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 45: 297-300.   DOI   ScienceOn
21 Vlysidis, A., M. Binns, C. Webb, and C. Thoedoropoulos. 2009. Utilisation of glycerol to platform chemicals within the biorefinery concept: A case for succinate production. Chem. Eng. Trans. 18: 537-542.
22 Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 345-352.
23 Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23: 1813-1825.   DOI
24 Willke, T. and K. D. Vorlop. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66: 131-142.   DOI   ScienceOn
25 Zaiat, M., J. A. D. Rodrigues, and E. Foresti. 2000. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment. Process Biochem. 35: 943- 949.   DOI   ScienceOn
26 Li, Q., D. Wang, Y. Wu, M. Yang, W. Li, J. Xing, and Z. Su. 2010. Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT. J. Microbiol. 48: 290-296.   DOI
27 Galaction, A. I., A. M. Lup teanu, M. Turnea, and D. Ca caval. 2010. Effect on internal diffusion on bioethanol production in a bioreactor with yeasts cells immobilized on mobile beds. Environ. Eng. Manag. J. 9: 675-680.
28 Inui, M., S. Murakami, S. Okino, H. Kawaguchi, A. A. Verties, and H. Yukawa. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate production under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196.   DOI   ScienceOn
29 Li, J., M. Jiang, K. Chen, L. Shang, P. Wei, H. Y. Q. Ye, et al. 2010. Enhanced production of succinic acid by Actinobacillus succinogenes with reductive carbon source. Process Biochem. 45: 980-985.   DOI   ScienceOn
30 Lin, S. K. C., C. Du, A. Koutinatis, R. Wang, and C. Webb. 2008. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem. Eng. J. 41: 128-135.   DOI   ScienceOn
31 Ling, E. T. M., J. T. Dibble, M. R. Houston, L. B. Lockwood, and L. P. Elliott. 1978. Accumulation of 1-trans-2,3-epoxysuccinic acid and succinic acid by Paecilomyces varioti. Appl. Environ. Microbiol. 35: 1213-1215.