• Title/Summary/Keyword: pandemic H1N1

Search Result 74, Processing Time 0.028 seconds

Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Jiae;Lee, Sooyeon;Song, Ki-Duk;Cha, Jihye;Dang, Hoang Vu;Tran, Ha Thi Thanh;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods: Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results: In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2'-5'-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion: Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.

Respiratory Review of 2012: Pneumonia

  • Yoon, Young-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Pneumonia is the cause of significant morbidity and mortality, despite advances in diagnosis and antibacterial treatment. Pneumonia is often misdiagnosed and mistreated up until recently. Recent classification of pneumonia consists of community-acquired pneumonia, health care-associated pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia. The etiology, risk factors, and treatment are different among them. This article briefly introduces new concepts and ideas in biomarkers, diagnosis, treatment, prognosis, and prevention of pneumonia during the past 2 years. One of the most frequent subjects of recent papers was those about pandemic H1N1 in 2009.

One step multiplex RT-PCR preventing DNA carryover contamination for differential diagnosis of swine influenza viruses (DNA 교차 오염 방지 기능을 가진 돼지 인플루엔자바이러스 감별진단용 one-step multiplex RT-PCR 진단법)

  • Kim, Hee-Jung;Kim, Eun-Mi;Shin, Yeun-Kyung;Song, Jae-Young;Kim, Seong-Hee;Lee, Kyoung-Ki;Lee, Myoung-Heon;Kim, Young-Hwa;Park, Jun-Cheol;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • In this study, we developed a cost and time saving one-step multiplex RT-PCR for the simultaneous detection and differentiation of swine influenza viruses (SIV) and 2009 pandemic influenza H1N1 virus (pH1N1). The one-step multiplex RT-PCR using four sets of primer was confirmed to be capable of detection of all SIV subtypes and differential diagnosis of major SIV subtype H1, H3 and pH1N1 on individual or mixed viral culture samples. The sensitivity of the multiplex RT-PCR was determined to be at least $2^{-6}$ $HA/25{\mu}L$ of the presented SIVs, providing sufficient efficacy for a routine SIV monitoring in diagnostic laboratories. In addition, compared with the conventional RT-PCR methods that cannot avoid the carryover DNA contamination, the developed RT-PCR applied with the uracil DNA glycosylase (UNG) system was proven to prevent a false positive reaction by carryover contamination of the pre-amplified DNA. In conclusion, the one-step RT-PCR with UNG system could be applicable to detect and differentiate of SIV from the viral cultures without worry of carryover DNA contamination in clinical laboratories.

Expression, Purification and Antiserum Production of the Avian Influenza H9N2 Virus HA and NA Proteins (Avian Influenza H9N2 Virus의 HA와 NA 단백질 발현, 정제 및 항혈청 생산)

  • Lee, Hyun-Ji;Song, Byung-Hak;Kim, Jeong-Min;Yun, Sang-Im;Kim, Jin-Kyoung;Kang, Young-Sik;Koo, Yong-Bum;Jeon, Ik-Soo;Byun, Sung-June;Lee, Youn-Jeong;Kwon, Jun-Hun;Park, Jong-Hyeon;Joo, Yi-Seok;Lee, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Avian influenza virus (AIV) is recognized as key to the emergence of pandemic influenza for humans; there are growing concerns that AIV H9N2 may become more efficient to transmit to humans in the near future, since the infection of poultry with AIV H9N2 has been common in recent years. In this study, we aimed to produce antisera recognizing the HA and NA proteins of AIV H9N2. Initially, coding sequences corresponding to the N-terminal regions of the HA and NA proteins of the Korean AIV H9N2 (A/Ck/Kr/MS96/96) isolated from a domestic chicken were amplified from the genomic RNA. Following cloning of the amplified cDNA fragments into pGEX4T-1 vector, two GST-fusion proteins (GST-HAln and GST-NAn) were expressed in E. coli BL21 and purified with glutathione sepharose columns; the recombinant GST-HAln and GST-NAn proteins were both used as immunogens in rabbits. The antigenicity of the rabbit antisera was analyzed by immunoblotting of the cell lysates prepared from AIV H9N2-infected MDCK cells. Overall, the recombinant HAln and NAn proteins fused to the C-terminus of GST and the rabbit antisera raised against the corresponding recombinant proteins would provide a valuable reagent for AIV diagnosis and basic research.

Anti-bacterial properties and safety evaluation of disinfectant using Dendropanax morbifera (Hwangchil) extract for passenger cabin in the subway (지하철 객실 적용을 위한 황칠 추출물 소독제의 항균특성 및 안전성 평가)

  • Bui, Vu Khac Hoang;Park, Jae-Seok;Lee, Young-Chul
    • Particle and aerosol research
    • /
    • v.18 no.2
    • /
    • pp.37-50
    • /
    • 2022
  • Due to the syndrome coronavirus 2 (SARS-CoV-2) pandemic, the subway passenger cabin should be continuously sterilized. However, a disinfectant such as chlorine is toxic and can lead to different issues to human health. In this paper, we introduced a novel disinfectant based on natural product (Dendropanax morbifera extract). Via ultra-high performance liquid chromatography - mass spectrometer (UHPLC-MS), different compounds from Dendropanax morbifera extract showed antivirus potentials. Antimicrobial experiments confirmed that the air-disinfectant containing Dendropanax morbifera can eliminate harmful microorganisms including Gram (-), Gram (+), and yeast within 5 mins. The as-prepared air-disinfectant also showed high antivirus activity against H1N1, HRV, and EV71. Deodorization test also indicates that the as-prepared air-disinfectant can lower the harmful gas such as ammonia and trimethylamine in the atmosphere. To evaluate the potential of air-disinfectant containing Dendropanax morbifera in practical applications, different safety tests including acute oral toxicity, acute skin irritation, and eye irritation were conducted. Results showed that the as-prepared disinfectant did not negatively affect tested animals during these safety investigations.

Immunostimulatory Activity of Hibiscus syriacus L. Leaves in Mouse Macrophages, RAW264.7 cells, and Immunosuppressed Mice

  • Na Gyeong Geum;Ju Hyeong Yu;So Jung Park;Min Yeong Choi;Jae Won Lee;Gwang Hun Park;Hae-Yun Kwon;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.697-703
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF

Rapid Molecular Diagnosis using Real-time Nucleic Acid Sequence Based Amplification (NASBA) for Detection of Influenza A Virus Subtypes

  • Lim, Jae-Won;Lee, In-Soo;Cho, Yoon-Jung;Jin, Hyun-Woo;Choi, Yeon-Im;Lee, Hye-Young;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Influenza A virus of the Orthomyxoviridae family is a contagious respiratory pathogen that continues to evolve and burden in the human public health. It is able to spread efficiently from human to human and have the potential to cause pandemics with significant morbidity and mortality. It has been estimated that every year about 500 million people are infected with this virus, causing about approximately 0.25 to 0.5 million people deaths worldwide. Influenza A viruses are classified into different subtypes by antigenicity based on their hemagglutinin (HA) and neuraminidase (NA) proteins. The sudden emergence of influenza A virus subtypes and access for epidemiological analysis of this subtypes demanded a rapid development of specific diagnostic tools. Also, rapid identification of the subtypes can help to determine the antiviral treatment, because the different subtypes have a different antiviral drug resistance patterns. In this study, our aim is to detect influenza A virus subtypes by using real-time nucleic acid sequence based amplification (NASBA) which has high sensitivity and specificity through molecular beacon. Real-time NASBA is a method that able to shorten the time compare to other molecular diagnostic tools and is performed by isothermal condition. We selected major pandemic influenza A virus subtypes, H3N2 and H5N1. Three influenza A virus gene fragments such as HA, NA and matrix protein (M) gene were targeted. M gene is distinguished influenza A virus from other influenza virus. We designed specific primers and molecular beacons for HA, NA and M gene, respectively. In brief, the results showed that the specificity of the real-time NASBA was higher than reverse transcription polymerase chain reaction (RT-PCR). In addition, time to positivity (TTP) of this method was shorter than real-time PCR. This study suggests that the rapid detection of neo-appearance pandemic influenza A virus using real-time NASBA has the potential to determine the subtypes.

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila;Dinesh Patil;Naeemakhtar Momin;J. Manjanna
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

A Study on the Establishment of Business Continuity Management Systems of the Organization During a Pandemic Outbreak (Focusing on the finance correspond case) (유행병 발병 시 조직의 비즈니스연속성 관리체계 구축에 관한 연구(금융회사 사례 중심으로))

  • Kim, Dae Jin;Yang, Seung Weon;Choi, Deok Jae;Kim, Gi Won;Jang, Hyun Min;Kim, Dong Heon;Eun, Min Gyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 2016
  • In recent years, epidemics have raged with a 6-7 years period such as SARS (2002), Swine Flu (2009), MERS (2015). When an epidemic arises, the first advice is the isolation of infected patients and disease areas. Because it appears after a certain incubation period, the peoples worked with Infected (infection cause) staff and the place are largely exposed to the epidemic Risk. If you have an epidemic in the workplace, even if you close it, the business plan should be ready to continue the safety and protection measures for employees and the organization's core business. In this study We present the corresponding measures to protect the safety of the employees and to continue the core business during a pandemic outbreak and the introduction of BCP mainly corresponding practices of financial companies.