• 제목/요약/키워드: pancreatic beta cells

검색결과 147건 처리시간 0.029초

야콘(Smallanthus sonchifolius) 추출물이 흰쥐의 췌장 섬유화에 미치는 영향 (The Effects of Yacon (Smallanthus sonchifolius) Extract on Pancreatic Fibrosis in the Rat)

  • 최난희;김종봉;김진택;박인식
    • 생명과학회지
    • /
    • 제22권7호
    • /
    • pp.904-911
    • /
    • 2012
  • 야콘(Smallanthus sonchifolius)은 저혈당에 민간요법으로 이용해 오고 있는 구근작물이다. 최근에는 야콘잎이 항산화, 항균, 항진균 활성과 세포보호 기능이 있다고 보고되고 있다. 본 실험에서는 이러한 생리활성을 지니는 야콘잎을 이용하여 흰쥐에 DBTC (8 mg/kg)를 주사하여 췌장염을 유발시킨 후 1% 야콘추출물이 췌장의 섬유화에 미치는 영향을 연구하였다. 유발 21일째 처리군에서 췌장의 실질조직의 많은 부분이 collagen으로 재구성되어 있었으나 유발군에서는 처리군에 비해 현저히 감소되어 있었다. COX-2 발현에서, 대조군은 반응이 나타나지 않거나 매우 약한 반응이었으나, 유발군에서는 14일째 매우 증가되었으며, 특히 21일째는 침윤하고 있는 많은 염증세포에서 COX-2의 발현이 확인되었다. 처리군은 유발군에 비해 발현이 감소되었다. TGF-${\beta}1$ 발현은 21일째 염증세포에서는 유발군이 처리군에 비해 현저한 증가 현상이 나타났으나, 샘꽈리세포에서의 TGF-${\beta}1$의 발현은 처리군에서 증가되었다. VEGF 발현은 TGF-${\beta}1$의 발현과 거의 유사한 경향으로 나타났다. 그러므로 야콘추출물이 DBTC로 유도된 췌장염의 섬유화 진행을 억제하는데 매우 효과적임을 확인하였다.

Insulin Delivery Systems: Current Topic

  • Jeong, Seo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • 제16권3호
    • /
    • pp.89-100
    • /
    • 1986
  • Although insulin has been available for the treatment of diabetes mellitus for more than half a centry, the deficiency of conventional insulin therapy for diabetic patients have, to this date, not been satisfactorily overcome by any method. The development of potential delivery systems for insulin is highly important to prevent excessive fluctuation of plasma glucose levels, which results in long term complications in the diabetic. There are three major approaches toward development of glucose responding insulin delivery systems: A bioengineering approach is to devise mechanical components capable of releasing insulin in amounts appropriate to varying blood-glucose requirements. A biological approach relies upon cultured, living pancreatic beta cells encapsulated to constitute an insulin delivery unit. A biochemical approach is to synthesize a stable and biologically active glycosylated insulin that is complementary to the binding sites of lectin. This paper will cover several specific areas, including pancreatic transplantation(total or isolated islet cells), artificial pancreases(bioengineering or biological approach), controlled delivery system, glucose sensitive membrane systems, and a self-regulating insulin delivery system.

  • PDF

NF-${\kappa}B$ Inhibitor Suppresses Hypoxia-induced Apoptosis of Mouse Pancreatic ${\beta}$-cell Line MIN6

  • Koh, Hyun Sook;Kim, Jae Young
    • 대한의생명과학회지
    • /
    • 제20권1호
    • /
    • pp.14-24
    • /
    • 2014
  • Hypoxia is one of the main reasons for islet apoptosis after transplantation as well as during isolation. In this study, we attempted to determine the potential usefulness of NF-${\kappa}B$ inhibitor for suppression of hypoxia-induced ${\beta}$-cell apoptosis as well as the relationship between IP-10 induction and ${\beta}$-cell apoptosis in hypoxia. To accomplish this, we cultured the mouse pancreatic ${\beta}$-cell line MIN6 in hypoxia (1% $O_2$). Among several examined chemokines, only IP-10 mRNA expression was induced under hypoxia, and this induced IP-10 expression was due to NF-${\kappa}B$ activity. Since a previous study suggested that IP-10 mediates ${\beta}$-cell apoptosis, we measured hypoxia-induced IP-10 protein and examined the effect of anti-IP-10 neutralizing Ab on hypoxia-induced ${\beta}$-cell apoptosis. However, IP-10 protein was not detected, and anti-IP-10 neutralizing Ab did not rescue hypoxia-induced MIN6 apoptosis, indicating that there is no relationship between hypoxia-induced IP-10 mRNA expression and hypoxia-induced ${\beta}$-cell apoptosis. Since it was still not clear if NF-${\kappa}B$ functions as an apoptotic or anti-apoptotic mediator in hypoxia-induced ${\beta}$-cell apoptosis, we examined possible involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Treatment with 1 ${\mu}M$ NF-${\kappa}B$ inhibitor suppressed hypoxiainduced apoptosis by more than 50%, while 10 ${\mu}M$ AP-1 or 4 ${\mu}M$ NF-AT inhibitor did not, indicating involvement of NF-${\kappa}B$ in hypoxia-induced ${\beta}$-cell apoptosis. Overall, these results suggest that IP-10 is not involved in hypoxia-induced ${\beta}$-cell apoptosis, and that NF-${\kappa}B$ inhibitor can be useful for ameliorating hypoxia-induced ${\beta}$-cell apoptosis.

Effects of ${\gamma}-Aminobutyric$ Acid on Pancreatic Amylase Secretion Evoked by Sodium Oleate in Anesthetized Rats

  • Park, Yong-Deuk;Cui, Zheng-Yun;Park, Hyung-Seo;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권1호
    • /
    • pp.27-31
    • /
    • 2002
  • ${\gamma}-Aminobutyric$ Acid (GABA) is contained in pancreatic islet ${\beta}-cells$ although its physiological role in pancreatic exocrine function is completely unknown at the present time. Recently, we have reported that exogenous GABA enhances secretagogue-evoked exocrine secretion in the isolated, perfused rat pancreas. This study was aimed to investigate an effect of exogenous GABA on pancreatic exocrine secretion in vivo evoked by intestinal stimulation. Rats were anesthetized with urethane (1.4 g/kg) after 24-h fast with free access to water. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h),$ given intravenously, did not change spontaneous pancreatic amylase secretion but dose-dependently elevated the amylase secretion evoked by intraduodenal sodium oleate (0.05 mmol/h). GABA $(30\;{\mu}mol/kg/h)$ also further increased the amylase secretion stimulated by CCK (30 pmol/kg/h) plus secretin (20 pmol/kg/h) but failed to modify the amylase secretion induced by secretin alone. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h)$ also dose-dependently elevated pancreatic amylase secretion evoked by CCK alone. Bicuculline $(100\;{\mu}mol/kg/h),$ a $GABA_A-receptor$ antagonist, markedly reduced the GABA-enhanced pancreatic responses to sodium oleate, CCK plus secretin or CCK alone. The results indicate that GABA enhances the sodium oleate-evoked pancreatic amylase secretion via $GABA_A-receptor$ in anesthetized rats, which may account for elevating the action of CCK released by sodium oleate.

Apoptosis of Human Islet Cells by Cytokines

  • Kim, Sun-Shin;Kim, Kyoung-Ah;Suk, Kyoung-Ho;Kim, Yun-Hee;Oh, Seung-Hoon;Lee, Moon-Kyu;Kim, Kwang-Won;Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • 제12권3호
    • /
    • pp.113-117
    • /
    • 2012
  • FasL, perforin, $TNF{\alpha}$, IL-1 and NO have been considered as effector molecule(s) leading to ${\beta}$-cell death in autoimmune diabetes. However, the real culprit(s) of ${\beta}$-cell destruction have long been elusive despite intense investigation. Previously we have suggested $IFN{\gamma}/TNF{\alpha}$ synergism as the final effector molecules in autoimmune diabetes of NOD mice. A combination of $IFN{\gamma}$ and $TNF{\alpha}$ but neither cytokine alone, induced classical caspase-dependent apoptosis in murine insulinoma and pancreatic islet cells. $IFN{\gamma}$ treatment conferred susceptibility to $TNF{\alpha}$-induced apoptosis on otherwise resistant murine insulinoma cells by STAT1 activation followed by IRF-1 induction. Here we report that $IFN{\gamma}/TNF{\alpha}$ synergism induces apoptosis of human pancreatic islet cells. We also observed STAT1 activation followed by IRF-1 induction by $IFN{\gamma}$ treatment in human islet cells. Taken together, we suggest that $IFN{\gamma}/TNF{\alpha}$ synergism could be involved in human islet cell death in type 1 diabetes, similar to murine type 1 diabetes.

Effect of White, Taegeuk, and Red Ginseng Root Extracts on Insulin-Stimulated Glucose Uptake in Muscle Cells and Proliferation of β-cells

  • Cha, Ji-Young;Park, Eun-Young;Kim, Ha-Jung;Park, Sang-Un;Nam, Ki-Yeul;Choi, Jae-Eul;Jun, Hee-Sook
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.192-197
    • /
    • 2010
  • Recent studies have indicated that $\beta$-cell dysfunction and insulin resistance are important factors in the development of type 2 diabetes. The present study investigated the effect of extracts from different parts of white, Taegeuk, and red ginseng root on insulin-stimulated glucose uptake in muscle cells and proliferation of $\beta$-cells. Extracts of the fine roots of Taegeuk ginseng significantly enhanced glucose uptake compared with the control. White ginseng lateral root extracts enhanced insulin-induced glucose uptake. Proliferation of $\beta$-cells was significantly increased by Taegeuk ginseng main and lateral root extracts and by red ginseng lateral and fine root extracts. In conclusion, different root parts of white, Taegeuk, and red ginseng differentially affect glucose uptake and pancreatic $\beta$-cell proliferation.

사인의 항당뇨 작용에 관한 연구 (Study no the Antidiabetic Effect of Amomum xanthioides Extract)

  • 이지현;조정임;조남표;박병현;권강범;노혜원
    • 동의생리병리학회지
    • /
    • 제21권2호
    • /
    • pp.468-473
    • /
    • 2007
  • The antidiabetic effect of Amomum xanthioides(A. xanthioides) extract was investigated. Alloxan caused the hyperglycemia and hypoinsulinemia by a selective destruction of pancreatic ${\beta}$-cell. Pretreatment of mouse with A. xanthiodies extract for 2 days prior to alloxan administration completely protected hyperglycemia induced by alloxan. In addition, administration of A. xanthioides extract to alloxan-induced diabetic mouse significantly abolished hyperglycemia, hypoinsulinemia, and, the reduction of size and number of insulin-secreting cells induced by alloxan. Administration of A. xanthioides extract to alloxan-induced diabetic mouse rapidly increased pancreatic Reg gene expression to 7 days, and then decreased. In alloxan-diabetic mouse. Reg gene expression was increased at 3 days after alloxan injection, and sustained until 24 days. The present results indicate that A. xanthioides extract contains potentially effective components exhibiting both protection and treatment of alloxan-induced diabetes. These results suggested that the antidiabetic effect of A. xanthoides extract may be mediated through the regeneration of pancreatic ${\beta}$-cells.

황칠, 닥나무, 꾸지뽕 혼합 추출물의 항당뇨 효과 (Antidiabetic Effects of Mixed Extract from Dendropanax morbiferus, Broussonetia kazinoki, and Cudrania tricuspidata)

  • 김솔;김상준;오준석;홍재희;김선영
    • 대한한의학방제학회지
    • /
    • 제27권3호
    • /
    • pp.223-236
    • /
    • 2019
  • Dengropanax morfiferus (D), Broussonitia kazinoki (B), and Cudriania tricuspidata (E), a widely cultivated species in South Korea, has been used as traditional medicine to treat numerous diseases. In this study, we evaluated the antidiabetic effects in a various signaling mechanisms using mixed extract and major component contents were analyzed by HPLC in the combined extracts from Dengropanax morfiferus, Broussonitia kazinoki, and Cudriania tricuspidata (DBCE). DBCE inhibited ${\alpha}$-glucosidase and ${\alpha}$-amylase activation and showed potent antioxidant effects, which are evaluated using DPPH, ABTS, and SOD assay. Cytokines, which are released by inflammatory cells in pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. DBCE showed the protective effects in RINm5F cells against cytokines-induced damage by suppressing inducible nitric oxide (NO) synthase and COX-2 expression and NO production. Insulin resistance is the primary characteristic of type 2 diabetes. Therefore, the regulatory effect of DBCE on glucose uptake and production are investigated in insulin-responsive human HepG2 cells. DBCE stimulated glucose uptake, prevented Glut2 and phosphor-IRS1 downregulation induced by high glucose (HG, 30 mM). Moreover, DBCE pretreatment diminished glucose levels, PEPCK and G6Pase overexpression provoked by HG. These findings suggest that DBCE might be used for diabetes treatment through alpha-glucosidase or alpha-amylase activity regulation, pancreatic beta cell protection, hepatic glucose sensitivity improvement. Cytokines, which are released by inflammatory cells' infiltrations around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus.

Alloxan에 의한 HIT-T15 세포의 산화적 손상에 대한 매실(Prunus mume Sieb. et Zucc.) 주정추출물의 세포보호효과 (Cytoprotective Effect of Ethanol Extract from Maesil (Prunus mume Sieb. et Zucc.) on Alloxan-induced Oxidative Damage in Pancreatic-cell, HIT-T15)

  • 김인혜;김종배;조강진;김재현;엄애선
    • 한국자원식물학회지
    • /
    • 제25권2호
    • /
    • pp.184-192
    • /
    • 2012
  • 본 연구는 췌장베타세포인 HIT-T15 세포를 이용하여 매실주정추출물(PME)의 alloxan에 의한 산화스트레스로부터의 세포보호, 인슐린 분비능 및 항산화 효소 활성을 평가하였다. PME는 alloxan에 의해 유발된 산화스트레스로부터 세포를 보호하여 세포생존율을 증가시켰다. PME는 세포막 손상지표인 LDH 방출을 억제하였고 $NAD^+$/NADH ratio를 유의적으로 증가시켜 세포사멸이 억제되어짐을 확인하였다. 또한 alloxan 단독처리군에 비해 250 ${\mu}g$/ml PME 처리군에서 인슐린 분비량이 유의성 있게 증가하였다. Alloxan과 PME를 동시에 처리하여 HIT-T15세포의 항산화효소 활성을 측정했을 때 산화스트레스에 의해 감소되었던 항산화효소 활성이 PME에 의해 보호되는 효과를 확인하였다. 이상의 연구결과로부터 PME는 세포괴사 및 DNA fragmentation을 억제하고 세포내 항산화효소 활성을 증가시켜 alloxan에 의해 유발된 산화스트레스로부터 췌장베타세포를 보호하고 이에 따른 인슐린 분비능 조절 효과가 있는 것으로 생각된다.

Epigallocatechin Gallate Prevents Autoimmune Diabetes Induced by Multiple Low Doses of Streptozotocin in Mice

  • Song, Eun-Kyung;Hur, Hyeon;Han, Myung-Kwan
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.559-563
    • /
    • 2003
  • Cytokines produced by immune cells infiltrating pancreatic islets have been incriminated as important mediators of $\beta$-cell destruction in insulin-dependent diabetes mellitus. In non insulin-dependent diabetes, cytokines are also associated with impaired $\beta$-cell function in high glucose condition. By the screening of various natural products blocking $\beta$-cell destruction, we have recently found that epigallocatechin gallate (EGCG) can prevent the in vitro destruction of RINm5F cell, an insulinoma cell line, that is induced by cytokines. In that study we suggested that EGCG could prevent cytokine-induced $\beta$-cell destruction by down-regulation of nitric oxide synthase (NOS) through inhibition of NF-kB activation. Here, to verify the in vivo antidiabetogenic effect of EGCG, we examined the possibility that EGCG could also prevent the experimental autoimmune diabetes induced by the treatment of multiple low doses of streptozotocin (MLD-STZ), which is recognized as an inducer of type I autoimmune diabetes. Administration of EGCG (100 mg/day/kg for 10 days) during the MLD-STZ induction of diabetes reduced the increase of blood glucose levels caused by MLD-STZ. Ex vivo analysis of $\beta$-islets showed that EGCG downregulates the MLD-STZ-induced expression of inducible NOS (iNOS). In addition, morphological examination showed that EGCG treatment ameliorated the decrease of islet mass induced by MLD-STZ. In combination these results suggest that EGCG could prevent the onset of MLD-STZ-induced diabetes by protecting pancreatic islets. Our results therefore revealed the possible therapeutic value of EGCG for the prevention of diabetes mellitus progression.