• Title/Summary/Keyword: pH sensing

Search Result 251, Processing Time 0.032 seconds

Identification of a SNP in Chicken CaSR Gene and Its Effect on Economic Traits (닭의 CaSR 유전자내 단일 염기 변이 탐색 및 경제 형질간의 연관성 분석)

  • Hong, Y.S.;Oh, J.D.;Lee, J.H.;Kong, H.S.;Choi, C.H.;Lee, S.S.;Jeon, G.J.;Lee, H.K.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • The Function of the calcium sensing receptor (CaSR) is to control calcium levels by altering PTH (parathyroid hormone) secretion and renal calcium resorption. The influence of calcium on the basal and stimulated release of several hormones from chicken pituitary glands has been determined in vitro. The objective of this study was to identify SNP in chicken CaSR gene and to investigate the effect of the SNP on economic traits. The sequencing analysis method was used to identify nucleotide polymorphisms within chicken CaSR gene. This study identified SNP at position 1949 bp(Genebank accession No : XM_416491) in the exon 1. The SNP changed the amino acid to alanine(GCC) from serine(TCC). This SNP showed three genotypes, AA, AS and SS by digestion with the restriction enzyme NcoⅠ using the PCR-RFLP method. The A963S showed significant effect only on the first lay day (P<0.05) in Leghorn population. Leghorn with the genotype AA had significantly faster the first lay day(137.6) than the genotype AS(143.0, P<0.05). Also, the A963S showed significant effect only on the first lay day(P<0.05) and mean of egg weight(P<0.05) in KNC population. KNC with the genotypes AA ans AS had significantly faster the first lay day (151.0 and 152.6, respectively) than the genotype SS(159.4, P<0.05). And the genotypes SS had significantly heavier the mean of egg weight(50.4 kg, P<0.05) than the genotype AA ans AS (47.5 and 47.8 kg, respectively). According to result of this study, an a allele of the A963S was found to have a significant effect on the first lay day. It will be possible to use this SNP marker on selecting chicken to improve the first lay day.

Nano Force Metrology and Standards (나노 힘 측정 및 표준)

  • Kim M.S.;Park Y.K.;Choi J.H.;Kim J.H.;Kang D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

  • Kim, Seul-Ki;Bae, Si-Ra;Ahmed, Mohammad Shamsuddin;You, Jung-Min;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1215-1220
    • /
    • 2011
  • An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of $1.0{\times}10^{-7}$ to $1.0{\times}10^{-5}$ M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Cloning of Rod Opsin Genes Isolated from Olive Flounder Paralichthys olivaceus, Japanese Eel Anguilla japonica, and Common Carp Cyprinus carpio

  • Kim, Sung-Wan;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.265-275
    • /
    • 2009
  • G Protein-coupled receptors (GPCRs) mediating wide ranges of physiological responses is one of the most attractive targets for drug development. Rhodopsin, a dim-light photoreceptor, has been extensively used as a model system for structural and functional study of GPCRs. Fish have rhodopsin finely-tuned to their habitats where the intensity and the wavelength of lights are changed depending on its water-depth. To study the detailed molecular characteristics of GPCR architecture and to understand the fishery light-sensing system, genes encoding rod opsins were isolated from fishes living under different photic environments. Full-length rod opsin genes were obtained by combination of PCR amplification and DNA walking strategy of genomic DNA isolated from olive flounder, P. olivaceus, Japanese eel, A. japonica, and Common carp C. carpio. Deduced amino acid sequences showed a typical feature of rod opsins including the sites for Schiffs base formation (Lys296) and its counter ion (Glu113), disulfide formation (Cys110 and Cys187), and palmitoylation (Cys322 and Cys323) although Cys322 is replaced by Phe in Japanese eel. Comparison of opsins by amino acid sequence alignment indicated the closest similarity between P. olivaceus and H. hippoglossus (94%), A. japonica and A. anguilla (98%), and C. carpio and C. auratus (95%), respectively.

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il;Almtoft, Klaus P.;Lee, Hyeon-Seok;Andersen, Inge H.;Qin, Dongdong;Bao, Ningzhong;Grimes, C.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1989-1992
    • /
    • 2012
  • We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).

Heterostructures of SnO2-Decorated Cr2O3 Nanorods for Highly Sensitive H2S Detection (고감도 H2S 감지를 위한 SnO2 장식된 Cr2O3 nanorods 이종구조)

  • Jae Han Chung;Yun-Haeng Cho;Junho Hwang;Su hyeong Lee;Seunggi Lee;See-Hyung Park;Sungwoo Sohn;Donghwi Cho;Kwangjae Lee;Young-Seok Shim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • The creation of vertically aligned one-dimensional (1D) nanostructures through the decoration of n-type tin oxide (SnO2) on p-type chromium oxide (Cr2O3) constitutes an effective strategy for enhancing gas sensing performance. These heterostructures are deposited in multiple stages using a glancing angle deposition technique with an electron beam evaporator, resulting in a reduction in the surface porosity of the nanorods as SnO2 is incorporated. In comparison to Cr2O3 films, the bare Cr2O3 nanorods exhibits a response 3.3 times greater to 50 ppm H2S at 300℃, while the SnO2-decorated Cr2O3 nanorods demonstrate an eleven-fold increase in response. Furthermore, when subjected to various gases (CH4, H2S, CO2, H2), a notable selectivity toward H2S is observed. This study paves the way for the development of p-type semiconductor sensors with heightened selectivity and sensitivity towards H2S, thus advancing the prospects of gas sensor technology.

The Monohydrogen Arsenate-sensing Electrodes (Monohydrogen Arsenate 감응 전극)

  • Gwon-Shik Ihn;Il-Bae Park
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.162-167
    • /
    • 1987
  • Four component $Ag_2S$-PbS-$PbHAsO_4-Cu_2S$ and three component $Ag_2S$-PbS-$PbHAsO_4$ electrodes have been prepared and evaluated for the direct measurement of monohydrogen arsenate. The 3.0 : 0.5 : 1.0 : 0.25 (mole ratio, $Ag_2S$:PbS:$PbHAsO_4:Cu_2S$) composition is superior in terms of potentiometric response, stability, rapidity of response and reproducibility. Testing was done over the concentration range $10^{-1}$~$10^{-4}M\;HA_SO_4^{2-}$in 0.1F NH4Ac-NH4OH buffer solution at pH 8.50 with constant ionic strength. Interfering ions were $CN^-,\;I^-,\;S^{-2}$ and $Cl^-$.

  • PDF

Quality Characterization of Red Bean Gochujang prepared with Different Ratios of Meju (고추장용 메주 배합비를 달리하여 제조한 팥고추장의 품질 특성)

  • Kwon, Nu Ri;Yoon, Hyang-Sik;Kim, Ik Jei;Hong, Seong Taek;Kim, So-Young;Gil, Na Young;Han, Nam Soo;Eom, Hyun-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.5
    • /
    • pp.751-759
    • /
    • 2018
  • This study was conducted to investigate quality characteristics of red bean gochujang prepared with different ratios of meju for eight weeks. We determined quality characteristics such as pH, moisture content, total microbial flora counts, amino-type nitrogen content, total polypenol content, and antioxidant activity. The pH decreased by fermentation period, whereas total acidity was 0.36~0.39% in the early stage of fermentation, 0.63~1.16% at four weeks of fermentation, and decreased to 0.43~0.65% after the eighth week of fermentation. Moisture content of the control (no red bean, no rice) decreased 62.13% to 50.93%, but in case of the treatment, it slightly decreased. Total cell counts revealed similar tendency at the beginning of fermentation, and at eight weeks of fermentation. In case of lactic acid bacteria, all samples except RB-1.5 (gochujang added meju made of mixing ratio of rice:soybean:red bean (1:2:1.5) slightly increased. Amino nitrogen and total polyphenol of all samples increased in the fermentation period, especially RB-1.5 sample had the highest levels than other samples. By increasing the amount of red bean, DPPH radical scavenging activities increased. In taste sensing analysis, all treat samples except RB-1.5 revealed lower sourness than the control. Also, in case of bitterness, all samples revealed low content than the control. So, by adding red bean, it can enhance taste and function of gochujang.