Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.764

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films  

Choi, Yun-Hyuk (School of Advanced Materials and Chemical Engineering, Daegu Catholic University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 764-773 More about this Journal
Abstract
The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.
Keywords
CuO; thin film; doping; sol-gel method; gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Zhou, S. Lee, Z. Xu and J. Yoon, Chem. Rev., 115, 7944 (2015).   DOI
2 M. Righettoni, A. Amann and S. E. Pratsinis, Mater. Today, 18, 163 (2015).   DOI
3 N. Barsan, D. Koziej and U. Weimar, Sens. Actuators B, 121, 18 (2007).   DOI
4 Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B, 243, 262 (2017).   DOI
5 I. A. Alagdal and A. R. West, J. Mater. Chem. C, 4, 4770 (2016).   DOI
6 J.-H. Lee, Sens. Actuators B, 140, 319 (2009).   DOI
7 G. Korotcenkov, Mater. Sci. Eng. B, 139, 1 (2007).   DOI
8 M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47 (2005).   DOI
9 M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee and S.-H. Hong, Appl. Phys. Lett., 93, 263103 (2008).   DOI
10 S. Maeng, S.-W. Kim, D.-H. Lee, S.-E. Moon, K.-C. Kim and A. Maiti, ACS Appl. Mater. Interfaces, 6, 357 (2014).   DOI
11 B. Tong, Z. Deng, B. Xu, G. Meng, J. Shao, H. Liu, T. Dai, X. Shan, W. Dong, S. Wang, S. Zhou, R. Tao and X. Fang, ACS Appl. Mater. Interfaces, 10, 34727 (2018).   DOI
12 Y.-H. Choi, D.-H. Kim, S.-H. Hong and K. S. Hong, Sens. Actuators B, 178, 395 (2013).   DOI
13 Y.-H. Choi, D.-H. Kim and S.-H. Hong, ACS Appl. Mater. Interfaces, 10, 14901 (2018).   DOI
14 A. Cruccolini, R. Narducci and R. Palombari, Sens. Actuators B, 98, 227 (2004).   DOI
15 M. M. Natile, A. Ponzoni, I. Concina and A. Glisenti, Chem. Mater., 26, 1505 (2014).   DOI
16 Y. K. Jeong and G. M. Choi, J. Phys. Chem. Solids, 57, 81 (1996).   DOI
17 H.-J. Kim and J.-H. Lee, Sens. Actuators B, 192, 607 (2014).   DOI
18 X. G. Zheng, H. Yamada, D. J. Scanderbeg, M. B. Maple and C. N. Xu, Phys. Rev. B, 67, 214516 (2003).   DOI
19 S. Suda, S. Fujitsu, K. Koumoto and H. Yanagida, Jpn. J. Appl. Phys., 31, 2488 (1992).   DOI
20 N. Yoshida, T. Naito and H. Fujishiro, Jpn. J. Appl. Phys., 52, 031102 (1992).
21 A. Bejaoui, J. Guerin and K. Aguir, Sens. Actuators B, 181, 340 (2013).   DOI
22 National Institute of Standards and Technology (NIST), NIST X-ray Photoelectron Spectroscopy Database. From http://srdata.nist.gov/xps/, 2012, Retrieved September 1, 2019
23 S. Kamimura, N. Murakami, T. Tsubota and T. Ohno, Appl. Catal. B, 174, 471 (2015).   DOI
24 C.-Y. Chiang, Y. Shin and S. Ehrman, J. Electrochem. Soc., 159, B227 (2012).   DOI
25 Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mucklich and J. F. Pierson, J. Appl. Phys., 115, 073505 (2014).   DOI
26 X. G. Zheng, H. Yamada, D. J. Scanderbeg, M. B. Maple and C. N. Xu, Phys. Rev. B, 67, 214516 (2003).   DOI
27 Y. Peng, Z. Zhang, T. V. Pham, Y. Zhao, P. Wu and J. Wang, J. Appl. Phys., 111, 103708 (2012).   DOI
28 E.A. Goldstein, T. M. Gur and R. E. Mitchell, Corros. Sci., 99, 53 (2015).   DOI
29 E. Burstein, Phys. Rev., 93, 632 (1954).   DOI
30 T. S. Moss, Proc. Phys. Soc. (Lond.), B67, 775 (1954).   DOI
31 C. C. Chusuei, M. A. Brookshier and D. W. Goodman, Langmuir, 15, 2806 (1999).   DOI
32 Y.-H. Choi, D.-H. Kim and S.-H. Hong, Sens. Actuators B, 268, 129 (2018).   DOI