• 제목/요약/키워드: pH of slurry

검색결과 306건 처리시간 0.033초

양돈 슬러리의 암모니아 발생 특성에 관한 연구 (Study on Ammonia Emission Characteristic of Pig Slurry)

  • 이성현;윤남규;김경원;이인복;김태일;장진택
    • 한국축산시설환경학회지
    • /
    • 제12권1호
    • /
    • pp.7-12
    • /
    • 2006
  • 본 연구에서는 육성 비육돈 슬러리를 이용하여 슬러리의 환경조건에 따라 슬러리로 부터의 암모니아 발생 특성을 분석코자 하였다. 슬러리의 온도와 pH를 조절하여 슬러리로부터 발생하는 암모니아 농도를 측정 분석한 결과 슬러리의 온도가 높을수록 슬러리로 부터 발생하는 암모니아 농도는 급격히 증가하는 것으로 나타났고, 슬러리의 pH를 5, 6, 7, 8의 4수준으로 조절하여 각각의 온도에 따라 발생하는 암모니아 농도를 측정한 결과 pH 5, 6에서는 암모니아 가스가 검출되지 않았으나 pH 7, 8에서는 많은 양의 암모니아 가스가 검출되었고 양돈 슬러리의 pH가 높을수록 발생하는 암모니아 가스가 많이 발생하는 것으로 분석되었다. 본 연구결과 슬러리의 온도를 낮추어 주거나 슬러리의 pH를 낮춤으로써 슬러리로부터 발생하는 악취가스를 크게 줄일 수 있을 것으로 판단되었다.

  • PDF

pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향 (Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer)

  • 조현
    • 한국결정성장학회지
    • /
    • 제15권1호
    • /
    • pp.34-38
    • /
    • 2005
  • Langasite 단결정 wafer의 chemical mechanical planarization 공정에서 pH level 및 slurry 입도가 가공속도 및 평탄화도에 미치는 영향을 조사하였다. 낮은 pH level 조건하에서 더 높은 가공속도 값이 얻어진 반면에 평탄화도는 colloidal silica slurry의 평균입경에 의해 좌우됨을 확인하였다. 0.045 ㎛의 비정질 silica 입자를 함유한 슬러리를 사용하였을 때 표면에 잔류 scratch 형성이 없이 가장 좋은 가공성을 확보할 수 있었다. 가공속도와 평탄화도는 effective particle number에 대한 강한 의존성을 나타내었으며, effective particle number가 낮은 조건하에서 가공속도는 더 낮은 분포를 나타내었으나 평탄화도는 더 우수한 경향성을 확인하였다.

유기산 첨가제를 이용한 저품질 석회석 슬러리의 탈황 성능 개선 (Improvement of Desulfurization Performance of Low-grade Limestone Slurry Using Organic Acid Additives)

  • 정지은;조인아;이창용
    • 공업화학
    • /
    • 제32권2호
    • /
    • pp.190-196
    • /
    • 2021
  • 저품질 석회석의 탈황 성능 개선을 알아보기 위해 초산, 젖산, 개미산 등 3종의 유기산 첨가제를 사용하여 기포형 반응기에서 탈황 반응을 수행하였다. 유기산이 첨가되지 않은 석회석 슬러리는 pH 5.2 이하에서 초기 탈황 효율의 저하가 일어났다. 반면, 유기산이 첨가된 석회석 슬러리는 pH 4.2~4.5에서 안정된 초기 탈황 효율을 나타내었다. 슬러리 pH 4 이하에서 유기산이 첨가된 석회석 슬러리의 탈황 성능은 유기산의 해리에 의해 생성된 음이온의 양과 연관될 수 있다. 슬러리 중 유기산의 음이온 양이 많으면 슬러리 pH의 완충 기능 저하가 급격히 일어나지 않았다. 이와 같은 결과들은 유기산의 산성도 및 해리도에 기인하였다. 3종의 유기산 첨가에 따른 저품질 석회석 슬러리의 탈황 성능 증가율은 초산(2.6%) < 젖산 (6.4%) < 개미산 (16.7%) 순으로 나타났다.

연마 Recycling 시간에 따른 콜로이드 실리카 슬러리의 안정성 및 연마속도 (Effect of Recycling Time on Stability of Colloidal Silica Slurry and Removal Rate in Silicon Wafer Polishing)

  • 최은석;배소익
    • 한국세라믹학회지
    • /
    • 제44권2호
    • /
    • pp.98-102
    • /
    • 2007
  • The stability of slurry and removal rate during recycling of colloidal silica slurry was evaluated in silicon wafer polishing. The particle size distribution, pH, and zeta potential were measured to investigate the stability of colloidal silica. Large particles appeared as recycling time increased while average size of slurry did not change. Large particles were identified by EDS(energy dispersive spectrometer) as foreign substances from pad or abraded silicon flakes during polishing. As the recycling time increased, pH of slurry decreased and removal rate of silicon reduced but zeta potential decreased inversely. Hence, it could be mentioned that decrease of removal rate is related to consumption of $OH^-$ ions during recycling. Attention should be given to the control of pH of slurry during polishing.

Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향 (Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry)

  • 송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

구리 CMP시 비이온 계면활성제의 알루리마 슬러리 안정성에 대한 효과 (Characteristics by Surfactant Condition at Copper CMP)

  • 이도원;김남훈;김상용;서용진;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1288-1291
    • /
    • 2004
  • In this study, physical characteristics of alumina slurry on variation of pH value and the effect of non-ionic surfactants on alumina slurry for copper chemical mechanical planarization (CMP) slurry have been investigated. After pH value of the slurry with alumina abrasive was changed by adding various amount of $HNO^3$ or KOH, the differences of settling rate, particle size, and zeta-potential were estimated. Better settling rates were shown in slurries with alumina abrasive at near pH 1. Higher zeta-potential was shown at around pH 2 in alumina slurry and the point of zero charge (PZC) was measured at about pH $9\sim10$. Non-ionic surfactant was added in the slurry with 5wt% alumina abrasive to get its effect on slurry practically. Abrasive size was smaller increased when amount of surfactant increased in slurry with P-4 as abrasive; on the other side, it was smaller when amount of surfactant decreased with AES-12. Variation of zeta-potential has no tendency with adding surfactant; however, values of zeta-potential were between $35\sim50mV$. The proper amount of surfactant was $0.1\sim1.0wt%$ in slurry with P-4 and $0.5\sim1.0wt%$ in slurry with AES-12 respectively. Excellent dispersion stabilization was obtained by addition of non-ionic surfactant

  • PDF

염료감응형 태양전지용 나노다공질 TiO$_2$ 전극막의 제조 (Manufacturing of mesoporous TiO2 film for dye-sensitized solar cell)

  • 이동윤;구보근;이원재;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.308-311
    • /
    • 2003
  • The mesoporous TiO2 film for the dye-sensitized solar cell was prepared by the spin coating using nano particle $TiO_2$ slurry. In order to obtain the good dispersion of nano size $TiO_2$ particles in slurry, the pH of solvent, the sort and quantity of solvent additive and the quantity of surfactant were adjusted. The experimental range of pH was $2\;{\sim}\;4$. The basic solvent for slurry was dilute $HNO_3$ and the solvent additives were ethylene glycol, propylene glycol and butylene glycol. The degree of particle dispersion was indirectly estimated by the viscosity of slurry and the microstructure after sintering. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute $HNO_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO2 film using the dilute HNO3 solvent of pH 2 with the addition of ethylene glycol, propylene glycol and neutral surfactant.

  • PDF

Etching and Polishing Behavior of Cu thin film according to the additive chemicals

  • Ryu, Ju-Suk;Eom, Dae-Hong;Hong, Yi-Koan;Park, Jum-Yong;Park, Jin-Goo
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.274-278
    • /
    • 2002
  • The purpose of this study was to characterize the reaction of Cu surface with Cu slurry and CMP performance as a function of additives in CMP slurry. The polish rate of Cu was dependent on the kind of organic acids added in slurry. It was considered that polish rate of Cu was dependent on the concentration of carboxylates and mean particle size. When the etchant and oxidant were added in slurry, the highest removal rate and lower etch rate were measured at neutral pH. The addition of etchant, oxidant and pH adjustor played key roles of CMP ability in slurry. As the pH increased, polish rate of Cu was increased by the enhanced the mechanical effects due to effective dispersion of slurry particles. Alumina abrasives was more desirable for 1st step slurry because of high removal rate of Cu and high selectivity ratio among TaN and Cu.

  • PDF

Recycle 시간에 따른 실리콘 연마용 슬러리 입자 및 연마 속도 (Influence of recycling time on stability of slurry and removal rate for silicon wafer polishing)

  • 최은석;배소익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.59-60
    • /
    • 2006
  • The slurry stability and removal rate during recycling of slurry in silicon wafer polishing was studied. Average abrasive size of slurry was not changed with recycling time, however, large particles appeared as recycling time increased. Large particles were related foreign substances from pad or abraded silicon flakes during polishing. The removal rate as well as pH of slurry was decreased as recycling time increased. It suggests that the consumption of OH ions during recycling is the main cause of decrease of removal rate. Therefore, it is important to control pH of slurry to obtain optimum removal rate during polishing.

  • PDF

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF