• Title/Summary/Keyword: pH electrode

Search Result 692, Processing Time 0.023 seconds

The Inhibitory Effects of Korean Red Ginseng Saponins on 5- HT3A Receptor Channel Activity Are Coupled to Anti-Nausea and Anti-Vomiting Action

  • Kim Jong-Hoon;Lee Byung-Hwan;Jeong Sang Min;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • We performed in vitro and in vivo studies to know whether the inhibitory effects of ginsenosides on $5-HT_{3A}$ receptor channel acctivity are coupled to anti-nausea and anti-vomiting action. In vitro study, we investigated the effect of compound K (CK) and M4, which are ginsenoside metabolites, on human $5-HT_{3A}$ receptor channel activity expressed in Xenopus oocytes using two-electrode voltage clamp technique. Treatment of CK or M4 themselves had no effect in both oocytes injected with $H_2O\;and\;5-HT_{3A}$ receptor cRNA. In oocytes injected with $5- HT_{3A}$ receptor cRNA, M4 treatment inhibited more potently 5-HT-induced inward peak current $(I_{5-HT})$ than CK with dose-dependent and reversible manner. The half-inhibitory concentrations $(IC_{50})$ of CK and M4 were $36.9\;\pm\;10.1\;and\;7.3\;\pm\;2.2\;{\mu}M$, respectively. The inhibition of $I_{5-HT}$ by M4 was non-competitive and voltage-independent. These results indicate that M4 might regulate $5-HT_{3A}$ receptors. In vivo experiments, injection of cisplatin (7.5 mg/kg, i.v.) induced both nausea and vomiting with 1 h latency. These episodes reached to peak after 2 h and persisted for 4 h. Pre-treatment of GTS (500 mg/kg, p.o.) significantly reduced cisplatin-induced nausea and vomiting by $51\;\pm\;8.4\;and\;48.8\;\pm\;6.4\%$ during 4 h compared to GIS­untreated group, respectively. These results show the possibility that in vitro inhibition of $5-HT_{3A}$ receptor channel activity by ginsenosides might be coupled to in vivo anti-emetic activity.

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Emission spectroscopic diagnostics of argon arc Plasma in Plasma focus device for advanced lithography light source (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속장치의 아르곤 아크 플라스마의 방출 스펙트럼 진단)

  • Hong, Y.J.;Moon, M.W.;Lee, S.B.;Oh, P.Y.;Song, K.B.;Hong, B.H.;Seo, Y.H.;Yi, W.J.;Shin, H.M.;Choi, E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2006
  • We have generated the argon plasma in the diode chamber based on the established coaxial electrode type and investigated the emitted visible light for emission spectroscopy. We applied various voltages $2\sim3.5kV$ to the device by 0.5kV, and obtained the emission spectrum data for the focused plasma in the diode chamber on the argon pressure of 330 mTorr. The Ar I and Ar II emission line are observed. The electron temperature and ion density have been measured by the Boltzmann plot and Saha equation from assumption of local thermodynamic equilibrium (LTE) The Ar I and Ar II ion densities have been calculated to be $\sim10^{15}/cc\;and\;~10^{13}/cc$, respectively, from Saha equation.

Fabrication and Electric Properties of Piezoelectric Cantilever Energy Harvesters Driven in 3-3 Vibration Mode (3-3 진동 모드 압전 캔틸레버 에너지 하베스터의 제조 및 전기적 특성)

  • Lee, Min-seon;Kim, Chang Il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jang, Yong-ho;Choi, Beom-jin;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.263-269
    • /
    • 2017
  • A piezoelectric cantilever energy harvester (PCEH) driven in longitudinal (3-3) vibration mode was fabricated, and its electrical properties were evaluated by varying the resistive load. A commercial PZT piezoelectric ceramic with a high piezoelectric charge constant ($d_{33}$) of 520 pC/N and the interdigitated (IDT) electrode pattern was used to fabricate the PCEH driven in longitudinal vibration. The IDT Ag electrode embedded piezoelectric laminates were co-fired at $850^{\circ}C$ for 2 h. The 3-3 mode PCEH was successfully fabricated by attaching the piezoelectric laminates to a SUS304 elastic substrate. The PCEH exhibited a high output power of 3.8 mW across the resistive load of $100k{\Omega}$ at 100 Hz and 1.5 G. This corresponds to a power density of $10.3mW/cm^3$ and a normalized global power factor of $4.56mW/g^2{\cdot}cm^3$. Given the other PCEH driven in transverse (3-1) vibration mode, the 3-3 mode PCEH could be better for vibration energy harvesting applications.

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • v.23
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Effects of Operating Parameters on Phenol Degradation by Pulsed Corona Discharges in Aqueous Solutions (펄스 코로나 방전에 의한 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Moon, Ji-Hoon;Park, Eun-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Effects of operating parameters such as applied voltage, solution conductivity, ferrous ion concentration, electrode material on phenol degradation by pulsed corona discharges were investigated in laboratory scale experiments. The increase of applied voltage enhanced the phenol degradation by generating more energetic electrons. The solution conductivity inversely affected phenol removal rate in the tested ranges because the increase of conductivity decreased the electric field strength through the liquid phase. The addition of ferrous sulfate promoted the phenol degradation through the OH radical production by the Fentonlike reactions between ferrous ion and hydrogen peroxide generated by pulsed corona discharges. Catechol and hydroquinone were detected as primary intermediates of phenol degradation and the decrease of pH and the increase of conductivity were observed probably due to the generation of organic acids. Almost all of the initial phenol was disappeared and 29% of total organic corbon (TOC) was removed in the condition of 0.5 mM of ferrous sulfate after approximately 230 kJ of discharge energy transferred to the reactor.

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.