• Title/Summary/Keyword: pH dependent

Search Result 1,766, Processing Time 0.036 seconds

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Bae, Hyemi;Choi, Jeongyoon;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.141-150
    • /
    • 2019
  • Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

Electrochemical Characteristics of Water-Soluble Phosphate-Functionalized Naphthalene- and Perylene-Bisimides and Their Zirconium Bisphosphate Multilayers on ITO Electrode

  • Cho, Kwang Je;Kim, Yeong Il;Shim, Hyun Kwan
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • N,N'-bis(ethyldihydrogen phosphate)-1,4,5,8-naphthalene bis(dicarboximide) (EPNI) and N,N'-bis(ethyldihydrogen phosphate)-3,4,9,10-perylene bis(dicarboximide) (EPPI) and their zirconium bisphosphate multilayers (Zr-EPNI and Zr-EPPI), that had been briefly reported by us, were further investigated in terms of their electrochemical properties. EPNI in aqueous solution showed typical two reversible reductions at ITO electrode but the reductions were strongly dependent on solution pH while EPPI showed only an irreversible reduction. The single and mixed multilayers of Zr-EPNI and Zr-EPPI were well constructed on ITO electrode by the alternate adsorptions of zirconium ion and the bisimides. While Zr-EPNI multilayer on ITO electrode showed single broad reversible reduction with $E_{1/2}=-0.68V$, Zr-EPPI gave two separated reductions at $E_{1/2}=-0.54$ and -0.81 V vs SCE, quite differently from the solution properties. The average layer densities of the multilayers were estimated as $1.5{\times}10^{-10}$ and $2.3{\times}10^{-10}mol/cm^2$ for Zr-EPNI and Zr-EPPI, respectively. Both the monolayers of Zr-EPNI and Zr-EPPI could not completely block the electron transfer between $Fe(CN){_6}^{3-}$ in solution and ITO electrode but 3-5 layers of Zr-EPNI and Zr-EPPI could block it completely and mediated the one-way electron transfer at the potential shifted to their reduction potentials. When the monolayer of zirconium 1,10-decanediylbisphosphonate (Zr-DBP) was used as a sublayer of Zr-EPNI and Zr-EPPI layers, the mediated electron transfer became prominent without any direct electron transfer.

Genetic overgrowth syndrome: A single center's experience

  • Cheon, Chong Kun;Kim, Yoo-Mi;Yoon, Ju Young;Kim, Young A
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.64-71
    • /
    • 2018
  • Purpose: Overgrowth syndromes are conditions that involve generalized or localized areas of excess growth. In this study, the clinical, molecular, and genetic characteristics of Korean patients with overgrowth syndrome were analyzed. Materials and Methods: We recruited 13 patients who presented with overgrowth syndrome. All patients fulfilled inclusion criteria of overgrowth syndrome. Analysis of the clinical and molecular investigations of patients with overgrowth syndrome was performed retrospectively. Results: Among the 13 patients with overgrowth syndrome, 9 patients (69.2%) were found to have molecular and genetic causes. Among the seven patients with Sotos syndrome (SS), two had a 5q35microdeletion that was confirmed by fluorescent in situ hybridization. In two patients with SS, intragenic mutations including a novel mutation, c.5993T>A (p.M1998L), were found by Sanger sequencing. One patient had one copy deletion of NDS1 gene which was confirmed by multiplex ligation-dependent probe amplification. Among five patients with Beckwith-Wiedemann syndrome, three had aberrant imprinting control regions; 2 hypermethylation of the differentially methylated region of H19, 1 hypomethylation of the differentially methylated region of Kv. In one patient displaying overlapping clinical features of SS, a de novo heterozygous deletion in the chromosomal region 7q22.1-22.3 was found by single nucleotide polymorphism-based microarray. Conclusion: Considering high detection rate of molecular and genetic abnormalities in this study, rigorous investigations of overgrowth syndrome may be an important tool for the early diagnosis and genetic counseling. A detailed molecular analysis of the rearranged regions may supply the clues for the identification of genes involved in growth regulation.

The Effect of Vinegar Fermentation on the Nutritional Quality of Lotus Flower Fermented Product

  • Nam, Mikyung;Chrysta, Maynanda Brigita;Lee, Eunsuk;Choi, Wonsik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • All the parts of lotus, including the seed, rhizome, leaf, stalk, petal, anther, pericarp, and fruit receptacle, have been used in traditional medicine system as a health beneficial supplement. However the most usually used from lotus plant is only the root. Therefore in this study, it will be discussed more the utilization of other parts of the lotus, namely the flower of lotus. The petals and stamens of lotus actually are also rich in bioactive components such as flavonoids and alkaloids, are used in the treatment of tissue inflammation, cancer, skin disease, and also for us as antidotes. One of the biotechnological process that can be used to improve the nutritional content, sensory, and also antioxidant activities is fermentation process. The final product desired from the fermentation process in this study is vinegar. The microbial strain powder used is Uinkin fermented powder with three variations of fermentation. The variations given in this study were initial sugar 32%, 24%, and 14% with the same fermentation temperature, $35^{\circ}C$ for 3 months. The results obtained showed that the pH value and sugar content of products during the fermentation process were decreasing during the fermentation process, with total polyphenol content of $283.7{\pm}97.6mg/100g\;QAE$, and total flavonoid content of $3.3{\pm}0.0mg/100g\;QAE$. For the DPPH radical scavenging ability of the fermentation product also increased in a concentration dependent manner, with ORAC activity of the product showed a high activity of $20.7{\pm}0.41{\mu}M$ TE. Therefore, fermentation process can be the one of method for improving the product. The efficiency of lotus flower vinegar fermentation can be reached with an initial sugar condition of 25% (sample B).

Anti-inflammatory effect of Hemistepta lyrata Bunge (Bunge) on LPS-induced inflammation in RAW 264.7 cells (LPS로 유도된 RAW 264.7 세포에서 지칭개 추출물의 항염 효과)

  • Kim, Jae Kwang;Park, Su Young;Choi, Hwa Young;Jang, Mi Hee;Jung, Dae Hwa;Kim, Sang Chan;Cho, Il Je
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • Objectives : Hemistepta lyrata Bunge (Bunge) has been used for treating wound, hemorrhage, fever in Korean traditional medicine. Present study investigated anti-inflammatory effect of H. lyrata chloroform extract (HLE) and its molecular mechanism involved. Methods : To assess anti-inflammatory effect of HLE, production of nitric oxide (NO) and expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines were measured on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Moreover, nuclear factor-${\kappa}B$ (NF-${\kappa}B$) signaling pathway was examined to elucidate its molecular mechanism. Results : Pretreatment of HLE inhibited NO production in a concentration dependent manner. HLE also decreased expression of iNOS and COX-2, and alleviated expressions of pro-inflammatory cytokines in LPS-stimulated RAW 264.7 cells. Moreover, HLE pretreatment inhibited phosphorylation of inhibitory-${\kappa}B{\alpha}$ and p65. Conclusions : These results suggest that HLE exhibits anti-inflammatory effect via inhibition of NF-${\kappa}B$.

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Antioxidant Properties and Diet-Related α-Glucosidase and Lipase Inhibitory Activities of Yogurt Supplemented with Safflower (Carthamus tinctorius L.) Petal Extract

  • Hong, Heeok;Lim, Jeong Min;Kothari, Damini;Kwon, So Hee;Kwon, Hyuk Cheol;Han, Sung-Gu;Kim, Soo-Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.122-134
    • /
    • 2021
  • Recently, yogurt has been extensively studied to further enhance its functions using edible plant extracts. This study was conducted to investigate whether safflower petal (SP) as a natural food additive can be used to develop functional yogurt with improved health benefits. SPs were extracted with ethanol (SPE) and hot water (SPW), and then safflower yogurt was prepared by adding 0%-1.0% of those extracts to plain yogurt. With an increase in the fermentation duration, the pH of SPE and SPW yogurt samples was decreased, whereas titratable acidity and microbial counts were increased. The concentration of total polyphenols and total flavonoids, the activity of antioxidants, and the inhibitory effect on reactive oxygen species (ROS) were higher in SPW yogurt than SPE yogurt. Furthermore, α-glucosidase and lipase activity inhibitory effects of SPW yogurt were higher than those of SPE yogurt. In particular, free radical-scavenging activities, ROS inhibitory effect, and α-glucosidase activity inhibitory effects were significantly increased in SPW yogurt in a dose-dependent manner. Overall, these results suggest that SP extract possesses antioxidant activities and that it can downregulate α-glucosidase and lipase activities. The SP extract may have potential benefits as a natural food additive for the development of functional yogurt.

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase (PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구)

  • Hyunji, Kim;Jong-Ha, Park;Ae-Ran, Park;Dae-Hee, Lee;Joonho, Jeon;Hyuk Taek, Kwon;Sung In, Lim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.