• Title/Summary/Keyword: pH dependent

Search Result 1,768, Processing Time 0.029 seconds

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

2D-QSAR Analyses on the Binding Affinity Constants of Tetrahydropyrane and Tetrahydrofurane Analogues against Bovine Odorant Binding Protein and Predicted of High Active Molecules (Bovine Ordorant Binding Protein에 대한 Tetrahydropyrane 및 Tetrahydrofurane 유도체들의 결합 친화력 상수에 관한 2D-QSAR 분석과 고활성 분자의 예측)

  • Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.119-123
    • /
    • 2009
  • The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.

pH-dependent Metabolic Flux Shift in Novel Hydrogen-Producing Bacterium Enterobacter sp. SNU-1453 (새로운 수소 생산 균주인 Enterobacter sp. SNU-1453의 pH에 따른 Metabolic Flux 변화)

  • Shin, Jong-Hwan;Yoon, Jong-Hyun;Ahn, Eun-Kyoung;Sim, Sang-Jun;Kim, Mi-Sun;Park, Tai-Hyun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.464-469
    • /
    • 2005
  • For the biological production of hydrogen, a new fermentative hydrogen-producing bacterium, Enterobacter sp. SNU-1453, was isolated from a domestic landfill. During the culture of this bacterium, pH significantly decreased with the accumulation of various organic acids, and consequently this inhibited the production of hydrogen. It was found that the metabolic flux in this bacterium depended on the pH and affected the hydrogen production. A butanediol pathway was dominant during the fermentation when pH was not controlled. By controlling the pH at 7 this pathway can be shifted to a mixed acid pathway, which is favorable to the production of hydrogen.

Effect of pH on the Enolization of Sugars and Antioxidant Activity of Caramelization Products Obtained by Caramelization Browning

  • Kim, Ji-Sang;Lee, Young-Soon
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.931-939
    • /
    • 2008
  • The objective of this study was to investigate the enolization reaction and the antioxidant activity of caramelization products (CPs) obtained by caramelization browning of glucose and fructose solutions prepared at a pH ranging from 7.0 to 12.0 at varying temperatures ($80-180^{\circ}C$). The degradation of sugars rapidly increased at a high alkaline pH (10.0-12.0), and fructose degraded more rapidly than glucose (p<0.05). As the pH increased, the degree of sugar enolization was higher in fructose than in glucose. Browning and the formation of intermediate degradation products increased with the increase in heating temperatures. The browning development was dependent upon the type of sugar, and it was generally higher at alkaline pH than at neutral pH. The reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the CPs increased with the increase in browning and formation of large amounts of intermediates. Therefore, the CPs with pronounced antioxidant activity can be prepared by heating fructose or glucose solutions that have a very alkaline pH to high temperatures.

The Expression of Oncogenes on the Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK 선암세포주에서 방사선 조사에 의해 유도되는 Apoptosis에 미치는 암유전자의 발현)

  • Lee Hyung Sik;Park Hong Kyu;Moon Chang Woo;Yoon Seon Min;Hur Won Joo;Jeong Su Jin;Jeong Min Ho;Lee Sang Hwa
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.70-77
    • /
    • 1999
  • Purpose : The expression of p53, P211WAF/CIP, Bcl-2, and Bax underlying the radiation-induced apoptosis in different pH environments using SCK mammary adenocarcinoma cell line was investigated. Materials and Methods Mammary adenocarcinoma cells of hi) mice (SCK cells) in exponential growth phase were irradiated with a linear accelerator at room temperature. The cells were irradiated with 12 Gy and one hour later, the media was replaced with fresh media at a different pHs. After Incubation at 37Microbioiogy, College of Medicine Dong A University for 0$\~$48 h, the extort of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Western blot analysis was used to monitor p53, p211WAFfCIP, Bcl-2, and Bu protein levels. Results : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. The radiation-induced G2IM arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Considerable amounts of p53 and p21 proteins already existed at pH 7.5 and increased the level of p53 and p21 significantly after 12 Gy X-irradiation. An incubation at pH 6.6 after 12 Gy X-irradiation did not change the level of p53 and p21 protein levels significantly. Bcl-2 proteins were not significantly affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis in different pHs. An exposure to 12 Gy of X-rays increased the level of Bax protein at pH 7.5 but at pH 6.6, it was slight. Conclusions : The molecular mechanism underlying radiation-induced apoptosis in dinerent pH environments using SCK mammary adenocarcinoma cell line was dependent of the expression p53 and P211YVAF/CIP proteins. We may propose following hypothesis that an acidic stress augments the radiation-induced G2iM arrest, which inhibiting the irradiated cells undergo post-mitotic apoptosis. The effects of environmental acidity on anti-apoptotic and pro-apoptotic function of Bcl-2 family was unclear in SCK mammary adenocarcinoma cell line.

  • PDF

PH Effect of [Li,La]TiO3 Coating Solution on Electrochemical Property of Li[Ni0.35Co0.3Mn0.35]O2 Cathode ([Li,La]TiO3 코팅용액의 pH에 따른 Li[Ni0.35Co0.3Mn0.35]O2 양극의 전기화학적 특성)

  • Jung, Kwang-Hee;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The surface of $Li[Ni_{0.35}Co_{0.3}Mn_{0.35}]O_2$ cathode was modified by $[Li,La]TiO_3$ coating using pH controlled coating solution. At low pH values (acidic solution), cathode powders, which is oxides, have a positive surface charge, whereas, they have a negative surface charge at high pH values. As a result, their charge could affect the formation of the coating layer on the surface of cathode powder. To determine the optimal pH value, the surface coating of the pristine powder was carried out at various pH values of the coating solution. The surface morphology of coated samples was characterization by SEM and TEM analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the pH of coating solution.

Effect of pH in 3.5% NaCl aqueous solution and ferrite grain size on corrosion fatigue fracture of dual phase steel (複合組織鋼의 부식피로파괴에 미치는 3.5% NaCl水溶液의 pH와 母相粒徑의 效果)

  • 오세욱;강호민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.867-876
    • /
    • 1987
  • Corrosion fatigue fracture with change in the grain size of M.E.F. dual phase steel is investigated in 3.5% NaCI aqueous solution at pH 2, 4, 6, 9, and 11. Generally speaking, decrease in corrosion fatigue life is strongly dependent on decrease in pH and slightly on the grain size. For the B material with the big grain size, the fatigue life is small due to its large reduction ratio of corrosion fatigue life. The influence of grain size on the reduction ratio of corrosion fatigue life is large at pH 11-6. Whi9le at pH 4-2 the reduction ratio of corrosion fatigue life only depends on the corrosion effect. The larger grain size and the lass pH result in the greater influence on corrosion fatigue crack propagation rate. As pH decreases, the plateau portion in the crack propagation rate curves of the B material are distinct. Crack propagation rate curves become slow down at high .DELTA.K range because crack closure effect by minute corrosion products inside crack causes the oxidation corrosion action less effective for a certain period of time. In A material with small grain size, fatigue life is increased in proportion with increase of martensite intergranular which brings forth restraining the crack propagation decreases crack propagation rate. Corrosion pit which is created in the surface of specimen is found at pH 6,4 and 2 which is noticeable and the unevenness of the surface of the specimen becomes severe as pH decreases. The unevenness of corrosion fatigue fracture surface is severe as the effect of pH increases i.e. as pH decreases. In proportion with increase in the grain size and decrease in pH, the aspect of brittle fracture becomes evident.

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF

pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels (글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동)

  • Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.299-304
    • /
    • 2005
  • There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pH-responsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation $M_t/M_{\infty}=kt^n$ was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the $pK_a$ of the gels. Experimental results of time-dependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.

S-Domain Frequency Dependent Network Equivalent for Electromagnetic Transient and Harmonic Assessment (전자기 과도현상 해석과 고조파 평가를 위한 S영역 주파수 의존 등가시스템 개발)

  • Wang, Y.P.;Chong, H.H.;Lee, J.T.;Han, H.H.;Kim, H.J.;Chong, D.I.;Kwak, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.143-144
    • /
    • 2006
  • The recent power systems are very complex and to model them completely is impractical for analysis of electromagnetic transient Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent Network Equivalent (FDNE) using S-domain rational Function Fitting is presented and demonstrated. The FDNE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a S-domain formulation. This Three-port FDNE have been applied to the test AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the Three-port FDNE developed under different condition. The study results have indicated the robustness and accuracy of Three-port FDNE for analisys of electromagnetic transient and harmonic assessment.

  • PDF