pH-dependent Metabolic Flux Shift in Novel Hydrogen-Producing Bacterium Enterobacter sp. SNU-1453

새로운 수소 생산 균주인 Enterobacter sp. SNU-1453의 pH에 따른 Metabolic Flux 변화

  • Shin, Jong-Hwan (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yoon, Jong-Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Ahn, Eun-Kyoung (School of Chemical and Biological Engineering, Seoul National University) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Mi-Sun (Korea Institute of Energy Research) ;
  • Park, Tai-Hyun (School of Chemical and Biological Engineering, Seoul National University)
  • 신종환 (서울대학교 화학생물공학부) ;
  • 윤종현 (서울대학교 화학생물공학부) ;
  • 안은경 (서울대학교 화학생물공학부) ;
  • 심상준 (성균관대학교 화학공학과) ;
  • 김미선 (한국에너지기술연구원 바이오매스연구센터) ;
  • 박태현 (서울대학교 화학생물공학부)
  • Published : 2005.12.30

Abstract

For the biological production of hydrogen, a new fermentative hydrogen-producing bacterium, Enterobacter sp. SNU-1453, was isolated from a domestic landfill. During the culture of this bacterium, pH significantly decreased with the accumulation of various organic acids, and consequently this inhibited the production of hydrogen. It was found that the metabolic flux in this bacterium depended on the pH and affected the hydrogen production. A butanediol pathway was dominant during the fermentation when pH was not controlled. By controlling the pH at 7 this pathway can be shifted to a mixed acid pathway, which is favorable to the production of hydrogen.

가정쓰레기 매립지 토양에서 분리된 Enterobacter sp. SNU-1453은 Enteric bacteria에 속하는 종(species)으로서 혐기 발효 시 효과적으로 수소를 생산하였다. 이러한 fermentative bacteria는 여러 가지 외부 요인에 의해 다른 metabolism을 나타내어 수소생산량에 영향을 준다. 혐기 발효가 진행됨에 따라 배지의 pH가 급격히 감소하여 미생물 성장과 수소생산에 영향을 미치므로, pH에 따른 metabolism변화를 관찰함으로써 수소생산을 극대화하기 위한 최적 pH 조건을 선정하여 제어할 필요가 있다. 본 연구에서는 수소생산에 대한 pH의 효과 및 pH 제어에 따른 metabolic flux를 분석하였다. 실험 결과 이 분리 균주는 매우 넓은 영역의 pH(4-7.5)에서도 수소를 생산하였으며, pH 7에서 가장 높은 수소생산량을 나타내었다. pH 7로의 제어는 butanediol pathway로부터 수소 생산에 더 유리한 mixed acid fermentation pathway로 metabolic flux를 변화시킴을 알 수 있었다.

Keywords

References

  1. Das, D. and T.N. Veziroglu (2001), Hydrogen production by biological processes: a survey of literature, lnt. J. Hydrogen Energy 26, 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Cho, B.-K., J.-H. Seo, T.-W. Kang, and B.-G. Kim (2003), Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase, Biotechnol. Bioeng. 83, 226-34 https://doi.org/10.1002/bit.10661
  3. Saitou, N. and M. Nei (1987), The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Bio. Evo. 4,406-25
  4. Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa (2001), Endophytic colonization and in planta Nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species, Appl. Envir. Microbiol. 67, 5285-93 https://doi.org/10.1128/AEM.67.11.5285-5293.2001
  5. Asis, C.A. and K. Adachi (2004), Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweetpotato stem in Japan, Lett. Appl. Microbiol. 38, 19-23 https://doi.org/10.1046/j.1472-765X.2003.01434.x
  6. Brenner, D. J., A. C. McWhorter, A. Kai, A. G. Steigerwalt, and J. J. 3rd Farmer (1986), Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov., J. Clin. Microbiol. 23,1114-20
  7. Dauga, C. (2002), Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies, Int. J. Syst. Evol. Microbiol. 52,531-47 https://doi.org/10.1099/00207713-52-2-531
  8. Gavini, F., J. Mergaert, A. Beji, C. Mielcarek, D. Izard, K. Kersters, and J. De Ley (1989), Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomeranscomb. nov. and description of Pantoea dispersa sp. nov., Int. J. Syst. Bacteriol. 39,337-45 https://doi.org/10.1099/00207713-39-3-337
  9. Oh, Y-K., E.-H. Seol, E. Y. Lee, and S. H. Park (2002), Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4, Int. J. Hydrogen Energy. 27, 1373-9 https://doi.org/10.1016/S0360-3199(02)00100-3
  10. Kumar, N. and D. Das (2000), Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochem. 35, 589-93 https://doi.org/10.1016/S0032-9592(99)00109-0
  11. Oh, Y-K., E.-H. Seol, J.R. Kim, and S.H. Park (2003), Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19, Int. J. Hydrogen Energy. 28, 1353-9 https://doi.org/10.1016/S0360-3199(03)00024-7
  12. Tanisho, N., M. Kuromoto, and N. Kadokura (1998), Effect of $CO_2$, removal on hydrogen production by fermentation, Int. J. Hydrogen Energy. 23, 559-63 https://doi.org/10.1016/S0360-3199(97)00117-1