• Title/Summary/Keyword: pH and EC

Search Result 1,153, Processing Time 0.03 seconds

Ion Characteristics of the Ground Water in Hydroponic Farms of Paprika for Export (수출 파프리카 재배 농가의 지하수 이온 특성)

  • Choi, Ki-Young;Oh, Jeong-Sim;Lee, Cheol-Seung;Park, Sung-Tae;Gantumur, Narnggerel;Yoo, Hyung-Joo;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.70-76
    • /
    • 2010
  • To investigate the ground water quality status for paprika hydroponics for export, its pH, EC (electrical conductivity) and inorganic ion concentrations were analyzed in Gangwan-do (27 samples), Gyeonsangnam-do (77 samples) and Jeollanam-do (54 samples) from November 2008 to September 2009. The average values of several components in ground water were as follows; 7.20 (6.57~7.54) in pH, 0.31 (0.05~0.49) $dS{\cdot}m^{-1}$ in EC, 97.81 (35.37~161.11) in $HCO_3$, 5.68 (0.45~15.48) in T-N, 0.67 (0.15~0.70) in P, 2.53 (0.59~6.70) in K, 35.68 (4.15~80.70) in Ca, 7.35 (1.46~14.87) in Mg, 17.89 (3.31~34.82) in Na, 0.01 (0~0.05) in Fe, 0.09 (0~0.51) in Mn, 0.06 (0~0.07) in Zn, and 0.03 (0~0.10) $mg{\cdot}L^{-1}$ in Cu, respectively. The values of pH, EC, $HCO_3$, Ca, Mg and Na in ground water were different depending on areas and farms. Frequency rates were 92.6% of pH 5.0~8.0, 89.3% of EC < 0.5 $dS{\cdot}m^{-1}$, 69.5% of $HCO_3$ < 100, 97.5% of Na < 30, 88.5% of Ca < 40, 97.5% of Mg < 20, 90.1% of Fe < 0.05, 99.6% of Mn < 0.6, and 98.3% of Zn < 0.5 $mg{\cdot}L^{-1}$, respectively, which can be used for nutrient fertilizers in hydroponics. The percentage of suitable water quality was 46.3% as 70 sites among the all analyzed ions. The pH value showed high significance of correlations with EC, Mg, $HCO_3$, Na, and Fe. Also the EC value showed high positive significance with T-N, K, Ca, Mg, $HCO_3$, Na and Mn.

Effect of EC and pH of Nutrient Solution on the Growth and Quality of Single-Stemmed Rose in Cutted Rose Production Factory (절화장미 수경재배시 배양액의 농도와 pH가 생육과 품질에 미치는 영향)

  • Lee Hye Jin;Yang Eun-Young;Park Keum-Soon;Lee Yong-Beom;Bae Jong Hyang;Jeon Kyung Soo
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.258-265
    • /
    • 2004
  • The experiment was conducted to investigate the effect of EC and pH of nutrient solution on the growth and quality of the single-stemmed rose grown in a rose factory installed with hydroponic system. The growth and quality of the single-stemmed rose were not significantly different from each other with the EC of the nutrient solutions $1.0\~3.5dS{\cdot}m^{-1}$, which resulted in concluding high concentration of the nutrient solution was not necessary. The optimum range of the EC for single-stemmed rose was $1.5\~2.0dS{\cdot}m^{-1}$ considering plant growth, photosynthetic and transpiration rates. The optimum range of the pH for good plant growth without any visible physiological disorder was $4.0\~6.0$. Therefore, to keep the pH of the nutrient solution for rose low compared to other plants was beneficial for plant growth and uptake of the mineral ions.

Disposal Possibility of Raw Food Wastes Using Earthworm, Eisenia andrei (지렁이를 이용한 생 음식물쓰레기 체리 가능성)

  • Na Young Eun;Nam Hong Shik;Han Min Su;Bang Hae Sun;So Kyu Ho;Bae Yun Hwan;Ahn Yong Joon
    • The Korean Journal of Soil Zoology
    • /
    • v.8 no.1_2
    • /
    • pp.13-16
    • /
    • 2003
  • Disposal possibility of raw food wastes which have various characters without any washing and composting process was tested directly using the earthworm, Eisenia andrei. The amount of feeding treatment a day by the earthworm was investigated according to input amount of 1.5 kg/m$^2$ or 3.0 kg/m$^2$ of fifteen food wastes with the different pH and EC. Earthworm disposed an average of 0.87 kg/m$^2$/day of food wastes at the constant temperature of 15$^{\circ}C$ and 1.01 kg/m$^2$/day at 2$0^{\circ}C$. The most disposal among fifteen food wastes was the food waste with pH 5.3 and EC 17.7 as 1.59 kg/m$^2$/day at 15$^{\circ}C$ and as 1.63 kg/m$^2$/day at 2$0^{\circ}C$. The least disposal was the food waste with pH 3.9 and EC 17.7 as 0.31 kg/m$^2$/day at 15$^{\circ}C$ and as 0.53 kg/m$^2$/day at 2$0^{\circ}C$. It took an average 4 days to dispose the amount of 3 kg raw food wastes at 15$^{\circ}C$ and 3.3 days at 2$0^{\circ}C$.

  • PDF

Chages in pH, EC and Water Soluble Ions in the Rearing Beds of Eisenia andrei (Ennelida; Oligochaeta) in Relation to the Amount of Sludges Supplied to the Earthworm Populations (유기성슬러지 먹이공급에 따른 붉은줄지렁이 사육상의 pH, EC, 수용성 이온 농도변화)

  • Park, Kwang-Il;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.79-89
    • /
    • 2017
  • Changes in pH, EC and water soluble cation and anion of the bed material in the rearing box of earthworms were investigated while sewage sludges or night soil sludge were cumulatively supplied to the 15 grams of initial earthworm population in the rearing box. Initial biochemical properties of sludges such as pH, EC, V.S. and water content were at the edible levels for earthworm. However, as the cumulative amount of sludges supplied to the earthworms were increased, pH of bed material in the rearing box was lowered and EC was increased, which meant that salt contents of bed material in the rearing box had been accumulated. Water soluble cations and anions were also accumulated in the bed material of the rearing box. Accumulation rates of ${NO_3}^-$ were especially prominent. Consequently, feeding rates of earthworm populations were reduced to nearly zero and earthworm populations finally died.

Variations of pH, EC and anion of stemflow and throughfall in Quercus mongolica and Q. variabilis (신갈나무와 굴참나무 수간류, 임내우의 pH, 전기전도도 및 음이온 변화)

  • Kim, Min-Sik;Seomun, Won;EZAKI, Tsugio;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.82-92
    • /
    • 2000
  • The pH, EC and anion of stemflow in Quercus mongolica and Q. variabilis were surveyed and analyzed in order to examine the relationship between watershed conservation function and flood control function of forest in quality and quantity in the Experiment Forests. College of Forest Sciences, Kangwon National University. The results were as follows: 1. pH values of rainfall ranged from 4.47 to 6.55(average: 5.39), and pH values of throughfall ranged from 4.07 to 6.25(average 5.45) for Q. mongolica and from 4.34 to 6.57(average : 5.62) for Q. variabilis, and thus pH values were not different between these two species. Also, pH values of stemflow from Q. mongolica ranged from 4.08 to 6.13(average 5.17) and those of stemflow from Q. variabilis ranged from 3.62 to 6.11(average : 4.68), and pH values of rainfall gave little influence on pH values of stemflow. But, pH values of stemflow in Q. mongolica and Q. variabilis appeard significantly lower in spring and than those in summer and autumn. 2. EC of rainfall was $3.0{\sim}62.6{\mu}s/cm$(average: $18.8{\mu}s/cm$), and EC of throughfall was $5.4{\sim}85.0{\mu}s/cm$(average : $25.1{\mu}s/cm$) for Q. mongolica and $5.0{\sim}253.0{\mu}s/cm$(average : $31.2{\mu}s/cm$) for Q. variabilis. Also, EC of stemflow from Q. mongolica ranged from 9.5 to $500.0{\mu}s/cm$(average : $81.8{\mu}s/cm$) and that of stemflow from Q. variabilis ranged from 11.5 to $534.5{\mu}s/cm$(average : $80.2{\mu}s/cm$). Seasonal EC of rainfall had little variation in the range of 20 to $30{\mu}s/cm$: EC of stemflow showed more than $100{\mu}s/cm$ from March to April and about $30{\mu}s/cm$ in summer period. Seasonal EC of stemflow varied so much and appeared high again from October to November. 3. $Cl^-$, $NO_3{^-}$ and $SO_4{^{2- }}$ concentrations of rainfall and throughfall were from 1 to 15ppm. and $PO_4{^{2- }}$ concentrations showed 0.57ppm and 0.23ppm in rainfall, 0.08ppm in Q. mongolica and 0.14ppm, 0.12ppm and 1.19ppm in Q. variabilis. Also, $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$ concentrations of stemflow were relatively higher than rainfall, and showed differences among seasons. $PO_4{^{2-}}$ concentration of rainfall and throughfall were not possible to observe, but $PO_4{^{2-}}$ concentrations of stemflow ranged from 0.08 to 31.99ppm(average : 3.22ppm) for Q. mongolica and that of stemflow ranged from 0.06 to 12.28ppm(average : 1.93ppm) for Q. variabilis.

  • PDF

Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils (시설재배지 유공관 암거배수에 의한 염류집적 경감효과)

  • Kim, Dae-Su;Yang, Jae E.;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

Impact of Current Density, Operating Time and pH of Textile Wastewater Treatment by Electrocoagulation Process

  • Hossain, Md. Milon;Mahmud, Md. Iqbal;Parvez, Md. Shohan;Cho, Haeng Muk
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Treatment of textile wastewater by the electrocoagulation (EC) process is being investigated by this experimental study. The objective of this experiment is to observe the efficiency of the EC process in removing chemical oxygen demand (COD) and turbidity. In this experiment an iron electrode is used in the EC process, and different working parameters such as pH, current density and operating time were studied in an attempt to achieve a higher removal capacity. The results show that the maximum COD removal occurred at neutral pH at operating time 30 min. COD and turbidity removal reaches at maximum, with optimum consumption of electrodes, between current density 85-95 $A/m^2$, and only trace amounts of metals were determined in the EC treated effluent.

Portable Soil pH Sensor Using ISFET Electrode

  • Hong, Youngsin;Chung, Sun-Ok;Park, Jongwon;Hong, Youngki
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Fertilizers have long been used to increase crop yields; however, farmers are still having difficulties in managing fertilizers for growing crops as well as economic problems. The conventional method of soil sampling and laboratory analysis to determine soil pH is time consuming and costly; therefore, a portable pH sensor is developed to characterize spatial or temporal variability within fields via rapid and dense data acquisition. The portable pH sensor comprises an electrode unit, a portable console, and a USB connector. The soil water content (SWC) and electrical conductivity (EC) affect the electrical resistance of soil. An artificial test soil is performed to evaluate the effect of SWC and EC on soil pH. The test results show that stable pH measurements are achieved at SWCs greater than 20 mL (16.3%). Regardless of the SWC, the electric potential difference (EPD) remains at 2.5 g of NaCl. As the EC increases in the soil samples, the EPD increases.

Study on Spatial Characteristics of Physicochemical Components of Spring Water in Mts. Geumjeong and Baekyang Area Using Kriging (크리깅 기법을 이용한 금정산-백양산 일대 용천수의 물리화학적 성분의 공간적 분포 특성 연구)

  • 함세영;정재열;류상민;강래수
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.439-457
    • /
    • 2002
  • Sping waters at 60 sites and groundwaters at 6 wells in Mts. Geumjeong and Baekyang area were investigated for measuring nine physicochemical components (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity and discharge rate). The pH of spring waters ranges from 5.06 to 8.38, alkalinity from 7.93 to 102.21 mg/ㅣ, electrical conductance from 9.5 to $270{\;}\mu\textrm{s}/cm$, Eh from 64.2 to 685.9 mV, DO from 4.57 to 12.13 mg/l, and the discharge rate from 4.26 to 182.2 ml/s. General statistics was carried out to analyze statistical characteristics of those components. To compare the components with one another, regression analyses were carried out. And the components of spring waters were compared to those of groundwaters. Kriging was used to estimate the spatial variation of DO, pH, Eh, EC, alkalinity and discharge rate in the study area. The kriged isopleth maps were made using normalized kriged values to find anomalies of the physicochemical components and to compare anomalies of different components.

The Stability of Cyhexatin Emulsifiable Concentrate Formulated by Using Phenol as a Cosolvent (보조용매(補助溶媒) Phenol로 제조(製造)된 Cyhexatin 유제(乳劑)의 안정성(安定性))

  • Kim, Yoon-Jeong;Kim, Jang-Eok;Kim, Jung-Ho;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.31 no.2
    • /
    • pp.193-199
    • /
    • 1988
  • This study was conducted to investigate the possibility of emulsifiable concentrate(EC) development and the stability and acaricidal activity of the formulated emulsifiable concentrate. Cyhexatin could be formulated into 9% EC by using phenol as a cosolvent and E-ASC as an emulsifier. Cyhexatin EC was stable in 0.5% moisture content, pH 4.5 and 7, but it was unstable in more than 1% moisture content and the alkaline condition of pH 9.5. The emulsion of cyhexatin EC was unstable in hard water of pH 10. The acaricidal activity of 500 fold of 9% EC was shown to be as good as that of 27% wp of 1500 fold.

  • PDF