Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils

시설재배지 유공관 암거배수에 의한 염류집적 경감효과

  • Kim, Dae-Su (Yangpyeong Agricultural Development & Technology Center) ;
  • Yang, Jae E. (Division of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University)
  • 김대수 (양평군농업기술센터) ;
  • 양재의 (강원대학교 자원생물환경학과) ;
  • 옥용식 (강원대학교 자원생물환경학과) ;
  • 유경열 (강원대학교 자원생물환경학과)
  • Received : 2006.01.20
  • Accepted : 2006.03.08
  • Published : 2006.04.30

Abstract

Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

시설재배지는 노지에 비하여 상대적으로 시비량이 많아 토양의 염류집적이 우려되고 EC가 높아지는 경우 양분과 수분의 흡수가 저해되며 일부 양분은 비유효태로 존재하게 되어 작물에 의한 영양소의 흡수가 저해된다. 본 연구는 연작으로 인하여 염류집적이 발생한 시설하우스 토양을 대상으로 50 cm 깊이에 PVC 유공배수관 (${\phi}10cm$)을 암거배수로 설치함으로써 토양염류를 적정수준으로 제어하고자 수행되었다. 토양의 염류제거 효과를 pH, EC, 양이온 등의 화학성 변화와 작물생육에 근거하여 판정하였다. 유공 암거배수관 설치 후 2년 동안 토양의 화학성을 분석한 결과 EC는 무처리구에서 $3.86-4.53dS\;m^{-1}$이었으나 유공 암거배수관 설치구에서는 $1.42-2.88dS\;m^{-1}$을 나타내어 유공 암거배수관 설치가 토양의 EC를 약 2배까지 감소시킴을 알 수 있었다. 유공 암거배수관 처리구 및 무처리구의 pH는 각각 pH 6.9-7.3 및 pH 7.2-7.5로 나타나 처리구가 다소 낮았으나 시설하우스 토양의 pH에 비하여 전반적으로 높은 수준이었다. 또한 토양의 pH와 양이온치환용량 사이에는 $CEC=17.107{\times}pH-106.2$ ($r^2=0.759^{**}$)의 상관관계를 나타내었다. 상추/상추/쑥갓을 재배한 후 토양의 EC를 깊이별로 조사한 결과 무처리구에서는 0-10, 11-20, 21-30, 31-40, 41-50 cm 깊이에서 각각 3.45, 3.47, 3.03, 2.93, $2.28dS\;m^{-1}$로 나타나 심층으로 갈수록 EC가 낮아졌으나 유공 암거배수관을 설치한 처리구에서는 2.43 2.52, 2.28. 4.00, $4.23dS\;m^{-1}$로 심층으로 갈수록 EC가 증가하였다. 이는 유공관 설치 시 염류가 집적된 표층과 비교적 염류농도가 낮은 심층의 토양이 상호 혼합되었기 때문으로 판단되었다. 토양깊이별 치환성 양이온의 농도 변화를 조사한 결과 표층에 존재하는 함량에 대한 비율로 보면 Mg > Ca > K 순으로 하양이동성이 큰 것으로 나타났다. 유공 암거배수관 설치에 대한 작물 재배시험에서 상추를 정식하고 15일 후 생존율은 98.2%로 나타나 무처리구의 86.6%에 비해 생존율이 11,4% 증가함을 알 수 있었다. 또한 상추의 생육상황을 평가하기 위해 줄기의 지제부직경을 조사한 결과 무처리구는 12.9 mm이었으나 유공 암거배수관 처리구의 경우 13.7 mm로 증가하여 직물생육에 긍정적인 영향을 주는 것으로 평가되었다. 이상의 결과로부터 염류가 집적된 시설재배지 토양의 심토에 암거배수관을 설치할 경우 표토의 집적된 염류를 지하부위로 용탈시켜 토양의 EC를 낮춰주고 작물의 생육과 수량을 증가함을 알 수 있었다.

Keywords

References

  1. Cho, S.H. 2000. Soil testing for available phosphorous and electrical conductivity of saturated extract of the green house soils. MS Thesis, Kangwon National University, Chuncheon, Korea. p.1-44
  2. Choi, W.Y. 1997. Development of absorbent-microbe mixture for desalination of green house soils. MOA, Gwacheon, Korea. p.1-105
  3. Ha, H.S., M.S. Yang, H. Lee, Y. B. Lee, B. K. Sohn, and U. G. Kang. 1997. Soil chemical properties and plant mineral contents in plastic film house in southern part of Korea. Korean J. Soil Sci. Fert. 30:272-279
  4. Hur, B.L., and Y.S. Song. 1995. Salt accumulation and amendment counterplan of soil under economic crop cultivation. Proceeding of Symposium on the Agriculture and Environment. p.44-63
  5. Jung, Y.S., J.H. Joo, S.D. Hong, I.B. Lee, and H.M. Ro. 2001. Discussion on dilution factor for electrical conductivity measured by saturation-paste and 1 : 5 soil to water extract, and CEC of Korean soils. Korean J. Soil Sci. Fert. 34:71-75
  6. Kang, B.G., I.M. Jeong, K.B. Min, and J.J. Kim. 1996. Effect of salt accumulation on the germination and growth of lettuce(Lactuca Sativa, L.). Korean J. Soil Sci. Fert. 29:360-364
  7. Kim, D.S. 2004. Effects of the perforated underdrainage pipe installment on the salt removal in the plastic film house soil. MS Thesis, Kangwon National University, Chuncheon, Korea. p.1-28
  8. Kim, J.H., J.S. Lee, W.L Kim, G.B. Jung, S.G. Yun, Y.T. Jung, and S.K. Kwun. 2002. Groundwater and soil environment of plastic film house fields around central part of Korea. Korean J. Environ. Agric. 21:109-116 https://doi.org/10.5338/KJEA.2002.21.2.109
  9. Kim, P.J., D.Y. Chung, and D.K. Lee. 1997. Effects of soil bulk density on saturated hydraulic conductivity and solute elution patterns. Korean J. Soil Sci. Fert. 30:234-241
  10. Kwak, H.K., K.S. Seong, N.J. Lee, S.B. Lee, M.S. Han, and K.A. Roh. 2003. Changes in chemical properties and fauna of plastic film house soil by application of chemical fertilizer and composted pig manure. Korean J. Soil Sci. Fert. 36:304-310
  11. Lim, S.K., C.Y. Chung, Y.S. Ok, and J.G. Kim. 2002. Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat. Korean J. Soil Sci. Fert. 35:344-351
  12. Mansel, R.S., J.G.A Fiskell, D.V. Calvert, and J.S. Rogers. 1986. Distribution of labelled nitrogen in the profile of a fertilized sandy soil. Soil Sci. 141:120-126 https://doi.org/10.1097/00010694-198602000-00004
  13. McLaren, R.G., and K.C., Cameron. 1996. Soil science: sustainable production and environmental protection. Oxford University Press, Auckland, New Zealand. p.178-285
  14. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
  15. Ok, Y.S., Y.S. Choi, S.E. Lee, S.K. Lim, N.H. Chung, and J.G. Kim. 2001. Effects of soil components and index ion on the surface charge characteristics of some Korean arable soils. Korean J. Soil Sci. Fert. 34:237-244
  16. Ok, Y.S., S.Lim, and J.G. Kim. 2002. Electrochemical properties of soils: principles and applications. Life Sci. Nat. Resour. Res. 10:69-84
  17. Ok, Y.S., J.E. Yang, K.Y. Yoo, Y.B. Kim, D.Y. Chung, and Y.H. Park. 2005. Screening of adsorbent to reduce salt concentration in plastic film house soil under continuous cultivation. Korean J. Environ. Agric. 24:253-260 https://doi.org/10.5338/KJEA.2005.24.3.253
  18. Park. C.G., Y.S. An, J.S. Yang, and C.S. Kang. 1998. Soil chemical properties under plastic film house of Kyunggi districts. Kyunggi Agriculture Research 9:169-176
  19. Pierzynski, G.M., J.T. Sims, and J.F. Vance. 2000. Soil and environmental quality. CRC Press, Florida, USA. p.1-418
  20. Song, Y.S., H.K. Kwak, B.L. Huh, and S.E. Lee. 1996. Use efficiency of nitrate nitrogen accumulated in plastic film house soils under continuous vegetable cultivation. Korean J. Soil Sci. Fert. 29:347-352
  21. Tanji, J. 1990. Agricultural salinity assessment and management. ASCE. p.487
  22. Yang, J.E., D.Y. Chung, J.G. Kim, and J.B. Chung. 2001. Soil contamination and agriculture environment. p.82-125: In Yang, J. E. and Lee, G. S. (ed.) Agriculture environment. The Korean Society of Agriculture and Environment
  23. Yang, J.E., C.J. Park, Y.S. Ok, K.Y. Yoo, and K.H. Kim. 2005. Fate of nitrogen and phosphorous in hydroponic waste solution applied to the upland soils. Korean J. Environ. Agric. 24:132-138 https://doi.org/10.5338/KJEA.2005.24.2.132