Browse > Article
http://dx.doi.org/10.6109/jicce.2022.20.1.49

Portable Soil pH Sensor Using ISFET Electrode  

Hong, Youngsin (Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
Chung, Sun-Ok (Department of Biosystems Machinery Engineering, College of Agriculture & Life Science, Chungnam National University)
Park, Jongwon (Chungchengman-do Agricultural Research and Extension Services)
Hong, Youngki (Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
Abstract
Fertilizers have long been used to increase crop yields; however, farmers are still having difficulties in managing fertilizers for growing crops as well as economic problems. The conventional method of soil sampling and laboratory analysis to determine soil pH is time consuming and costly; therefore, a portable pH sensor is developed to characterize spatial or temporal variability within fields via rapid and dense data acquisition. The portable pH sensor comprises an electrode unit, a portable console, and a USB connector. The soil water content (SWC) and electrical conductivity (EC) affect the electrical resistance of soil. An artificial test soil is performed to evaluate the effect of SWC and EC on soil pH. The test results show that stable pH measurements are achieved at SWCs greater than 20 mL (16.3%). Regardless of the SWC, the electric potential difference (EPD) remains at 2.5 g of NaCl. As the EC increases in the soil samples, the EPD increases.
Keywords
Electric Potential Difference; Electrode; ISFET; Portable soil pH sensor; Soil water content;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. J. Kim, K. A. Sudduth, and J. W. Hummel, "Soil macronutrient sensing for precision agriculture," Journal of Environmental Monitoring, vol. 11, pp. 1810-1824, 2009. DOI: 10.1039/b906634a.   DOI
2 A. Srinivasan, Handbook of Precision Agriculture: Principles and Applications, Oxford: The Hawrth Press, 2006.
3 S. Peets, A. M. Mouazen, K. Blackburn, B. Kuang, and J. Wiebensohn, "Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors," Journal of Computers and Electronics in Agriculture, vol. 81, pp. 104-112, 2012. DOI: 10.1016/j.compag.2011.11.011.   DOI
4 Y. Sasaki and Y. Kanai. 1995. "Highly sensitive taste sensor with a new differential LAPS method," Sensor and Actuators, vol. 24, no. 25, pp. 819-822, 1995. DOI: 10.1016/0925-4005(95)85182-8.   DOI
5 C. D. Christy, "Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy," Journal of Computers and Electronics in Agriculture, vol. 61, no. 1, pp. 10-19, 2008. DOI: 10.1016/j.compag.2007.02.010.   DOI
6 V. I. Adamchuk, E. D. Lund, T. M. Reed, and R. B. Ferguson, "Evaluation of an on-the-go technology for soil pH mapping," Journal of Precision Agriculture, vol. 8, no. 3, pp. 139-149, 2007. DOI: 10.1007/s11119-007-9034-0.   DOI
7 M. Kodaira, and S. Shibusawa, "Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping," Journal of Geoderma, vol. 199, pp. 64-79, 2013. DOI: 10.1016/j.geoderma.2012.09.007.   DOI
8 P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," in IEEE Transaction on Biomedical Engineering, vol. 17, pp. 70-71, 1970. DOI: 10.1109/TBME.1970.4502688.   DOI
9 V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upashyaya, "On-the-go soil sensors for precision agriculture," Journal of Computers and Electronics in Agriculture, vol. 44, pp. 71-91, 2004. DOI: 10.1016/j.compag.2004.03.002.   DOI
10 C. Jimenez-Jorquera, J. Orozco, and A. Balidi, "ISFET Based Micro sensors for Environmental Monitoring," Journal of Sensors, vol. 10, pp. 61-83, 2010. DOI: 10.3390/s100100061.   DOI
11 B. L. Conkling and R. W. Blanchar, "A comparison of pH measurements using the antimony microelectrode and glass electrode," Agronomy Journal, vol. 80, pp. 275-278, 1988. DOI: 10.2134/agronj1988.00021962008000020025x.   DOI
12 J. V. Sinfield, D. Fagerman, and O. Colic, "Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils," Journal of Computers and Electronics in Agriculture, vol. 70, no. 1, pp. 1-18, 2010. DOI: 10.1016/j.compag.2009.09.017.   DOI
13 W. J. Yoo, J. Y. Heo, D. H. Cho, K. W. Jang, J. K. Seo, B. Lee, Y. H. Cho, J. H. Moon, and B. G. Park, "Spectroscopic study on the development of fiber-optic pH sensor," Journal of the Korean Sensors Society, vol. 18, no. 5, pp. 364-371, 2009. DOI: 10.5369/JSST.2009.18.5.365.   DOI
14 M. Yuqing, C. Jianrong, and F. Keming, "New technology for the detection of pH," Journal of Biochemical and Biophsical Methods, vol. 63, pp. 1-9, 2005. DOI: 10.1016/j.jbbm.2005.02.001.   DOI
15 M. Joly, L. Mazenq, M. Marlet, P. Temple-Boyer, C. Durieu, and J. Launay. "Multimodal probe based on ISFET electrochemical microsensors for in-situ monitoring of soil nutrients in agriculture," in 2017 Eurosensors Conference, Paris, France, September, 1. 2017. DOI: 10.3390/proceedings1040420.   DOI
16 H. Lee, M. Kim, and J. Choi, "A study on the proficiency test of pH measurements," Analytical science & technology. vol.14, no. 3, pp. 230-237, 2001, [Online] Available: https://www.koreascience.or.kr/article/JAKO200119068855253.page
17 H. Uchida, W. Y. Zhang, and T. Katsube, "High speed chemical sensor with digital LAPS system," Journal of Sensor and Actuators, pp. 446-449, 1996. DOI: 10.1016/S0925-4005(96)01939-9.   DOI
18 A. M. Mouazen, M. R. Maleki, D. Baerdemaeker, and H. Ramon, "On-line measurement of some selected soil properties using a VISNIR sensor," Journal of Soil & Tillage Research, vol. 93, pp. 13-27, 2007. DOI: 10.1016/j.still.2006.03.009.   DOI
19 S. K. Bae, S. H., Lee, S. W. Kang, and J. H. Cho, 2001. "Algorithm for integral method for photocurrent measurement of pH variations using multichannel LAPS," Journal of the Institute of Electronics and Information Engineers, vol. 38, no. 6, pp. 65-75, 2001, [Online] Available: www.koreascience.or.kr/article/JAKO200119068855253.page.
20 N. R. Kitchen, "Emerging technologies for real-time and integrated agriculture decisions," Journal of Computers and Electronics in Agriculture, vol. 61, pp. 1-3, 2008. DOI: 10.1016/j.compag.2007.06.007.   DOI
21 S. Jamasb, S. Collins, and R. L. Smith, "A physical model for drift in pH ISFETs," Journal of Sensors and Actuators B: chemical, vol. 49, pp. 146-155, 1998. DOI: 10.1109/TBME.1970.4502688.   DOI
22 S. Peets, A. M. Mouazen, K. Blackburn, B. Kuang, and J. Wiebensohn, "Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors," Journal of Computers and Electronics in Agriculture, vol. 81, pp. 104-112, 2012. DOI: 10.1016/j.compag.2011.11.011.   DOI
23 S. A. Staggenborg, M. Carignano, and L. Haag, "Predicting soil pH and buffer pH in situ with a real-time sensor," Journal of Agronomy, vol. 99, pp. 854-861, 2007. DOI: 10.2134/agronj2006.0254.   DOI
24 M. Schirrmann, R. Gebbers, E. Kramer, and J. Seidel, "Soil pH mapping with an on-the-go sensor," Journal of Sensors, vol. 11, pp. 573-598, 2011. DOI: 10.3390/s110100573.   DOI
25 M. Schirrmann, and H. Domsch, "Sampling procedure simulating on-the-go sensing for soil nutrients," Journal of Plant Nutrition and Soil Science, vol. 174, no. 2, pp. 333-343, 2011. DOI: 10.1002/jpln.200900367.   DOI
26 G. Yufeng, J. A. Thomasson, and R. Sui, "Remote sensing of soil properties in precision agriculture: a review," in Frontiers of Earth Science, vol. 5, no. 3, pp. 229-238, 2011. DOI: 10.1007/s11707-011-0175-0.   DOI
27 V. I. Adamchuk, E. D Lund, B. Sethuranasamyraja, M. T. Morgan, A. Dobermann, and D. B. Marx, "Direct measurement of soil chemical properties on-the-go using ion-selective electrodes," Journal of Computers and Electronics in Agriculture, vol. 48, pp, 272-294, 2005. DOI: 10.1016/j.compag.2005.05.001.   DOI
28 S. J. Birrell and J. W. Hummel, "Real-time multi ISFET/FIA soil analysis system with automatic sample extraction," Journal of Computers and Electronics in Agriculture, vol. 32, pp. 45-67, 2001. DOI: 10.1016/S0168-1699(01)00159-4.   DOI