• Title/Summary/Keyword: pH Sensors

Search Result 257, Processing Time 0.022 seconds

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Heterogeneous Porous WO3@SnO2 Nanofibers as Gas Sensing Layers for Chemiresistive Sensory Devices

  • Bulemo, Peresi Majura;Lee, Jiyoung;Kim, Il-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.345-351
    • /
    • 2018
  • We employed an unprecedented technique to synthesize porous $WO_3@SnO_2$ nanofibers exhibiting core-shell and fiber-in-tube configurations. Firstly, 2-methylimidazole was uniformly incorporated in as-spun nanofibers containing ammonium metatungstate hydrate and the sacrificial polymer (polyacrylonitrile). Secondly, the 2-methylimidazole on the surfaces of nanofibers was complexed with tin(II) chloride ($SnCl_2$) via simple impregnation of the as-spun nanofibers in ethanol containing tin(II) chloride dihydrate ($SnCl_2{\cdot}2H_2O$). The presence of vacant p-orbitals in tin (Sn) and the nucleophilic nitrogen on the imidazole ring allowed for the reaction between $SnCl_2$ and 2-methylimidazole, forming adducts on the surfaces of the as-spun nanofibers. The calcination of these nanofibers resulted in porous $WO_3@SnO_2$ nanofibers with a higher surface area ($55.3m^2{\cdot}g^{-1}$) and a better response to 1-5 ppm of acetone than pristine $SnO_2$ NFs synthesized using a similar method. An improved response to acetone was achieved upon functionalization of the $WO_3@SnO_2$ nanofibers with catalytic palladium nanoparticles. This work demonstrates the potential application of $WO_3@SnO_2$ nanofibers as sensing layers for chemiresistive sensory devices for the detection of acetone in exhaled breath.

Design of Multichannel Telemetering IC for Physiological Signals (생체 신호처리를 위한 다채널 텔레미터용 IC 설계)

  • Park, Jong-Dae;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.147-154
    • /
    • 1992
  • This paper describes the design of implantable 8-channel telemetering system to get physiological signals. The internal circuits of this system are designed not only to achieve as small size and low power dissipation as possible, but also to enable continuous measurement of physiological signals. Its main functions are to enable continuous measurement of physiological signals and to accomplish on-off power switching of an implantable battery by receiving appropriate command signals from an external circuit. To integrate implantable biotelemetry system, we performed layout of internal system using Lambda based $2{\mu}m$ n-well design rules. This system, used together with appropriate sensors, is expected to be capable of measuring and transmitting such significant parameters as pressure, pH, and temperature.

  • PDF

Manufature of Telemetry System for Multiple Subjects Using CMOS Custom IC (전용 CMOS IC에 의한 다중 생체 텔레미트리 시스템 제작)

  • Choi, Se-Gon;Seo, Hee-Don;Park, Jong-Dae;Kim, Jae-Mun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • This paper presents a manufacture of the multiple subjects biotelemetry system using custom CMOS IC fabricated $1.5{\mu}m$ n-well process technology. The implantable circuits of the system except sensor interface circuits including FM transmitter are fabricated on a single chip with the sire of $4{\times}4mm^{2}$. It is possible to assemble the implantable system in a hybrid package as small as $3{\times}3{\times}2.5cm$ by using this chip, It's main function is to enable continuous measurement simultaneously up to 7-channel physiological signals from the selected one among 8 subjects. Another features of this system are to enable continuous measurement of physiological signals, and to accomplish ON/OFF switching of an implanted battery by subject selection signal with command signal from the external circuit. If this system is coupled with another appropriate sensors in medical field, various physiological parameters such as pressure, pH and temperature are to be measured effectively in the near future.

  • PDF

Fabrication and Verification of a Water Quality Sensor Equipped with Active RFID Function for Real Time Location (위치추적용 능동형 RFID 기능을 장착한 수질 측정 센서의 제작 및 검증)

  • Jung, Young-Sub;Chang, Hun;Kim, Jin-Young;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.113-120
    • /
    • 2009
  • Through the automatic sensing of the environment, USN technology can give the best services. In this work, we have developed an active RFID system and examined its performance. By implementing it into water quality sensors, we constructed a system that can detect diverse indoor/outdoor environment and provide information about the pollution level obtained from the temperature and PH sensors. Our RF system had an internal Print-on-PCB antenna for the miniaturization of the tag. We used a RF transceiver CC2510 chipset of TI company to realize the active RFID function. By using RSSI constants obtained, we performed the evaluation of real time location accuracy with a software written in Labview. Among 10 arbitrary locations, we obtained average measurement errors of 1.69 m in x axis and 1.66 m in y axis. This technology can be applied to logistics, environmental monitoring, prevention of missing children and various applications.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Highly sensitive and selective enzymatic detection for hydrogen peroxide using a non-destructively assembled single-walled carbon nanotube film (탄소나노튜브 대면적 어셈블리를 통한 고감도-고선택성 과산화수소 센서 개발)

  • Lee, Dongwook;Ahn, Heeho;Seo, Byeong-Gwuan;Lee, Seung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.229-235
    • /
    • 2021
  • This study presents a simple approach for the assembly of a free-standing conductive electronic nanofilm of single-walled carbon nanotubes (SWNTs) suitable for enzymatic electrochemical biosensors. A large-scale SWNT electronic film was successfully produced by the dialysis of p-Terphenyl-4,4''-dithiol (TPDT)-treated SWNTs. Furthermore, Horseradish peroxidase (HRP) was immobilized on the TPDT-SWNT electronic film, and the enzymatic detection of hydrogen peroxide (H2O2) was demonstrated without mediators. The detection of H2O2 in the negative potential range (-0.4 V vs. Ag/AgCl) was achieved by direct electron transfer of heme-based enzymes that were immobilized on the TPDT-SWNT electronic film. The SWNT-based biosensor exhibited a wide detection range of H2O2 from 10 µM to 10 mM. The HRP-doped SWNT electronic film achieved a high sensitivity of 342 ㎛A/mM·cm2 and excellent selectivity against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, and acetaminophen.

Effects of Task and Part on Tremor Characteristics in Patients with Essential Tremor (본태성 진전 환자의 진전특성에 대한 수행과제 및 부위의 영향)

  • Heo, J.H.;Kim, J.W.;Kwon, Y.R.;Eom, Gwang-Moon;Kwon, D.Y.;Lee, C.N.;Park, K.W.;Manto, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Essential tremor is a neurological disorder with a tremor of the arms and hands. It is well known that essential tremor is characterized by the postural tremor and the action tremor. There has been no report on the quantitative difference in the characteristics of two tremor types. The purpose of this study was to investigate the possible difference in tremor characteristics of postural and action tremors. Seventeen patients with essential tremor ($68.9{\pm}7.9years$, 7 men, 10 women) participated in this study. Patients performed the tasks of postural maintenance (arms outstretched) and daily actions (spiral drawing). Three-axes (pitch, roll and yaw) gyro sensors were attached on index finger, back of hand and forearm, from which the segment and the joint angular velocities were calculated. Outcome measure was the tremor amplitude defined as the root-mean-square mean of the vector-sum angular velocity at segments and joints. Two-way ANOVA showed that task and joint had main factor on the tremor amplitude (p < 0.05). Post-hoc analysis revealed that tremor amplitude at the metacarpo-phalangeal joint was not affected by task (p > 0.05). However, tremor amplitude at the wrist joint differed among the tasks (p < 0.05), and it was greater in the action tasks than in postural task. Tremor was greater at finger segments than at hand and forearm and it increased in action tasks. The results of this study would be helpful for the understanding and task-specific treatments of the essential tremor.

Major B-H Loop Measurement of Toroidal Shape Magnetic Powder Core (토로이드형 분말코어의 Major B-H Loop 측정)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2014
  • Toroidal cores made of metallic powder requires large magnetic field strength up to few decade kA/m to obtain major hysteresis loop. To overcome thermal heat generation problem from large exciting current during measurement, we have employed a real time hysteresis loop tracer which can digitize and calculate B-H signals in personal computer as real time. For example, when we magnetize specimen at 10 Hz frequency, we could display hysteresis loops 10 times per second. Using the real time hysteresis loop tracer, we could measure major hysteresis loop of toroidal shape metallic powder core at maximum flux density or maximum magnetic field strength to be measured within 5 second not to significant increasement of specimen temperature due to the heat dissipation from coil windings. For the constructed hysteresis loop tracer, we could measure hysteresis loop at magnetic field strength higher than 50 kA/m for the toroidal shape specimen.

Sensor technology for environmental monitoring of shrimp farming (새우양식 환경 모니터링을 위한 센서기술 동향 분석)

  • Hur, Shin;Park, Jung Ho;Choi, Sang Kyu;Lee, Chang Won;Kim, Ju Wan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.154-164
    • /
    • 2021
  • In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.