Browse > Article
http://dx.doi.org/10.5806/AST.2016.29.1.35

A new nano-composite carbon ink for disposable dopamine biosensors  

Dinakaran, T. (Graduate Department of Chemical Materials, Pusan National University)
Chang, S.-C. (Institute of Bio-Physio Sensor Technology, Pusan National University)
Publication Information
Analytical Science and Technology / v.29, no.1, 2016 , pp. 35-42 More about this Journal
Abstract
A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.
Keywords
reduced graphene oxide; nano-composite; screen printed carbon electrode; dopamine; tyrosinase; biosensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Ku, S. Palanisamy and S. M. Chen, J. Colloid Interface Sci., 411, 182-186 (2013).   DOI
2 D. L. Robinson, A. Hermans, A. T. Seipel and R. M. Wightman, Chem. Rev., 108(7), 2554-2584 (2008).   DOI
3 S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. Lai and H. He, Anal. Chem., 79(6), 2583-2587 (2007).   DOI
4 C. F. Tang, S. A. Kumar and S. M. Chen, Anal. Biochem, 380(2), 174-183 (2008).   DOI
5 K. Jackowska and P. Krysinski, Anal. Bioanal Chem., 405(11), 3753-3771 (2013).   DOI
6 S. Tembe, B. S. Kubal, M. Karve and S. F. D'Souza, Anal. Chim. Acta, 612(2), 212-217 (2008).   DOI
7 Z. Liu, B. Liu, J. Kong and J. Deng, Anal. Chem., 72(19), 4707-4712 (2000).   DOI
8 Y. C. Tsai and C. C. Chiu, Sensor. Actuat. B-Chem., 125(1), 10-16 (2007).   DOI
9 E. S. Forzani, G. A. Rivas and V. M. Solis, J. Electroanal. Chem., 435(1-2), 77-84 (1997).   DOI
10 Y. Wang, X. Zhang, Y. Chen, H. Xu, Y. Tan and S. Wang, Am. J. Biomed. Sci., 2(3), 209-216 (2010).
11 S. C. Chang, K. Rawson, C. J. McNeil, Biosens Bioelectron, 17(11-12), 1015-1023 (2002).   DOI
12 W. Schultz, Annu Rev Neurosci, 30, 259-288 (2007).   DOI
13 M. Perry, Q. Li and R. T. Kennedy, Anal. Chim. Acta, 653(1), 1-22 (2009).   DOI
14 F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau and B. Madea, Forensic Sci. Int., 113(1-3), 359-366 (2000).   DOI
15 A. El-Beqqali, A. Kussak and M. Abdel-Rehim, J. Sep Sci., 30(3), 421-424 (2007).   DOI
16 T. Yoshitake, J. Kehr, K. Todoroki, H. Nohta and M. Yamaguchi, Biomed. Chromatogr., 20(3), 267-281 (2006).   DOI
17 A. Kankaanpaa, E. Meririnne, K. Ariniemi and T. Seppala, J. Chromatogr. B, 753(2), 413-419 (2001).   DOI
18 L. Zhang, N. Teshima, T. Hasebe, M. Kurihara and T. Kawashima, Talanta, 50(3), 677-683 (1999).   DOI
19 Y. L. Zhou, R. H. Tian and J. F. Zhi, Biosens Bioelectron, 22(6), 822-828 (2007).   DOI
20 J. Huang, Y. Liu, H. Hou and T. You, Biosens Bioelectron, 24(4), 632-637 (2008).   DOI
21 K. Min and Y. J. Yoo, Talanta, 80(2), 1007-1011 (2009).   DOI
22 M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 81(14), 5603-5613 (2009).   DOI
23 M. Moreno, A. S. Arribas, E. Bermejo, M. Chicharro, A. Zapardiel, M. C. Rodriguez, Y. Jalit and G. A. Rivas, Talanta, 80(5), 2149-2156 (2010).   DOI
24 K. S. Prasad, G. Muthuraman and J. M. Zen, Electrochem. Comm., 10(4), 559-563 (2008).   DOI
25 J. Ping, J. Wu, Y. Wang and Y. Ying, Biosens Bioelectron, 34(1), 70-76 (2012).   DOI
26 A. Salimi, V. Alizadeh and R. G. Compton, Analytical Sci., 21(11), 1275-1280 (2005).   DOI
27 T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim and J. H. Lee, Biosens Bioelectron, 26(12), 4637-4648 (2011).   DOI
28 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80(6), 1339-1339 (1958).   DOI
29 M. R. Montereali, L. Della Seta, W. Vastarella and R. Pilloton, J. Mol. Catal. B: Enzym., 64, 189-194 (2010).   DOI
30 R. Solna, E. Dock, A. Christenson, M. Winther-Nielsen, C. Carlsson, J. Emneus, T. Ruzgas and P. Skladal, Anal. Chim. Acta, 528(1), 9-19 (2005).   DOI
31 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45(7), 1558-1565 (2007).   DOI
32 Y. Wang, J. Liu, L. Liu and D. D. Sun, Nanoscale Res Lett., 6(1), 241 (2011).   DOI
33 W. Qin and X. Li, J. Phys. Chem. C, 114(44), 19009-19015 (2010).   DOI
34 T. E. Barman, 'Enzyme Handbook', Vol. 1, Springer, New york, 1969.
35 J. Njagi, M. M. Chernov, J. C. Leiter, S. Andreescu, Anal. Chem., 82(3), 989-996 (2010).   DOI