• 제목/요약/키워드: p38 mitogen-activated protein kinases

검색결과 224건 처리시간 0.028초

LPS로 유도된 RAW264.7 염증모델에서 MAPK 조절에 의한 양유(羊乳)의 항염증효과 (Codonopsis Lanceolata Inhibits Inflammation through Regulation of MAPK in LPS-stimulated RAW264.7 cells)

  • 김범회;이용태;강경화
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.80-84
    • /
    • 2010
  • Codonopsis Lanceolata (CL) has been widely used in Oriental medicine for treatment of chronic inflammatory diseases, such as bronchitis, cough, and spasm; however, the mechanism of its anti-inflammatory activity has not been clarified. In this study, therefore, we investigated the inhibitory effect of CL on LPS-induced inflammation. The effect of CL was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. We found that CL suppressed not only the mRNA expression of pre-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2, but also the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. These results suggest that CL exerts an anti-inflammatory effect through the regulation of the mitogen-activated protein kinases (MAPK) pathway, thereby decreasing production of pre-inflammatory cytokines, NO, and PGE2.

Inhibitory Effect of Alpiniae officinarum Rhizoma Extract on Degranulation in RBL-2H3 Cells

  • Kim, Eunhee;Ahn, Sejin;Lee, Deug-Chan
    • 한국자원식물학회지
    • /
    • 제28권3호
    • /
    • pp.321-328
    • /
    • 2015
  • Alpiniae officinarum Rhizoma (the rhizome of Alpinia officinarum Hance, known as lesser galangal), a family of Zingiberaceae, has been used to reduce pain of infection and inflammatory diseases in Asian countries. The present study was focused to evaluate the inhibitory degranulation effect of Alpiniae officinarum Rhizoma extract in RBL-2H3 rat basophilic leukemia cells. Cell viability was measured by MTT assay. RBL-2H3 cells were stimulated by phorbol 12-myristate 13-acetate and calcium ionophore A23187. Mast cell degranulation was analyzed by measuring release of β-hexosaminidase in RBL-2H3 cell. Gene expression was measured by qRT-PCR and signaling molecules were detected by immunoblotting. The Alpiniae officinarum Rhizoma extract suppressed β-hexosaminidase release in dose-dependent manner and inhibited cycloxygenase-2 and tumor necrosis factor-α gene expression. Furthermore, it was found that Alpiniae officinarum Rhizoma extract reduced mitogen-activated protein kinases, especially phosphorylated p38, at 0.75 ㎎/㎖ of Alpiniae officinarum Rhizoma extract concentrations. These data show that Alpiniae officinarum Rhizoma extract has immunosuppressive effect in mast cell induced allergic inflammation.

Oral Administration of Bifidobacterium lactis Ameliorates Cognitive Deficits in Mice Intracerebroventricularly Administered Amyloid Beta via Regulation the Activation of Mitogen-activated Protein Kinases

  • Jong Kyu Choi;Oh Yun Kwon;Seung Ho Lee
    • 한국축산식품학회지
    • /
    • 제44권3호
    • /
    • pp.607-619
    • /
    • 2024
  • Probiotics are functional microorganisms that exhibit various biological activities, such as allergic reactions, inflammation, and aging. The aim of this study is to evaluate the effects of Bifidobacterium lactis CBT BL3 (BL) on the amyloid beta (Aβ)-mediated cognitive impairments. Oral administration of live BL to intracerebroventricularly Aβ-injected mice significantly attenuated short- and long-term memory loss estimated using the Y-maze and Morris water maze tests. We found that expression of apoptosisrelated proteins such as caspase-9, caspase-3, and cleaved poly (ADP-ribose) polymerase was significantly elevated in the brain tissues of Aβ-injected mouse brains when compared to that of the control mouse group. Interestingly, these expression levels were significantly decreased in the brain tissue of mice fed BL for 6 wk. In addition, the abnormal over-phosphorylation of mitogen-activated protein kinases (MAPKs) such as ERK1/2, p38 MAPK, and JNK in the brain tissue of intracerebroventricularly Aβ-injected mice was significantly attenuated by oral administration of BL. Taken together, the results indicate that Aβ-induced cognitive impairment may be ameliorated by the oral administration of BL by controlling the activation of MAPKs/apoptosis in the brain. This study strongly suggests that BL can be developed as a functional probiotic to attenuate Aβ-mediated cognitive deficits.

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun;Park, Sang-Jung;Cho, Sang-Nae;Lee, Hye-Young;Kim, Yoon-Suk
    • BMB Reports
    • /
    • 제45권10호
    • /
    • pp.583-588
    • /
    • 2012
  • Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

The Effect of Caffeic Acid Phenethyl Ester (CAPE) on Phagocytic activity of septic Neutrophil in vitro

  • Eun-A Jang;Hui-Jing Han;Tran Duc Tin;Eunye Cho;Seongheon Lee;Sang Hyun Kwak
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.211-219
    • /
    • 2023
  • Caffeic acid phenethyl ester (CAPE) is an active component of propolis obtained from honeybee hives. CAPE possesses anti-mitogenic, anti-carcinogenic, anti-inflammatory, and immunomodulatory activities in diverse systems, which know as displays antioxidant activity and inhibits lipoxygenase activities, protein tyrosine kinase, and nuclear factor kappa B (NF-κB) activation. This study aimed to investigate the effect of CAPE on lipopolysaccharide (LPS)-induced human neutrophil phagocytosis. Human neutrophils were cultured with various concentrations of CAPE (1, 10, and 100 µM) with or without LPS. The pro-inflammatory proteins (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6 and IL-8) levels were measured after 4 h incubation. To investigate the intracellular signaling pathway, we measured the levels of mitogen-activated protein kinases (MAPK), including phosphorylation of p38, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Next, to evaluate the potential phagocytosis, neutrophils were labeled with iron particles of superparamagnetic iron oxide nanoparticles (SPIONs, 40 nm) for 1 h in culture medium containing 5 mg/mL of iron. The labeling efficiency was determined by Prussian blue staining for intracellular iron and 3T-wighted magnetic resonance imaging. CAPE decreased the activation of intracellular signaling pathways, including ERK1/2 and c-Jun, and expression of pro-inflammatory cytokines, including TNF-α and IL-6, but had no effect on the signaling pathways of p38 and cytokine IL-8. Furthermore, images obtained after mannan-coated SPION treatment suggested that CAPE induced significantly higher signal intensities than the control or LPS group. Together, these results suggest that CAPE regulates LPS-mediated activation of human neutrophils to reduce phagocytosis.

스트레스-유도 열충격단백질 27(Heat Shock Protein 27)의 활성과 물리치료의 상관성 (The Activation of Stress-induced Heat Shock Protein 27 and the Relationship of Physical Therapy)

  • 김미선;이성호;김일현;황병용;김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권1호
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Heat shock proteins (HSPs) are a group of proteins that are activated when cells are exposed to a variety of environmental stresses, such as infection, inflammation, exposure to toxins, starvation, hypoxia, brain injury, or water deprivation. The activation of HSPs by environmental stress plays a key role in signal transduction, including cytoprotection, molecular chaperone, anti-apoptotic effect, and anti-aging effects. However, the precise mechanism for the action of small HSPs, such as HSP27 and mitogen-activated protein kinases (MAPKs: extracellular-regulated protein kinase 1/2 (ERK1/2), p38MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), is not completely understood, particularly in application of cell stimulators including platelet-derived growth factor (PDGF), angiotensin II (AngII), tumor necrosis factor $\alpha$ (TNF$\alpha$), and $H_2O_2$. This study examined the relationship between stimulators-induced enzymatic activity of HSP27 and MAPKs from rat smooth and skeletal muscles. Methods: 2-dimensional electrophoresis (2DE) and matrix assisted laser desorption ionizationtime-of-flight/time-of-flight (MALDI-TOF/TOF) analysis were used to identify HSP27 from the intact vascular smooth and skeletal muscles. Three isoforms of HSP27 were detected on silver-stained gels of the whole protein extracts from the rat aortic smooth and skeletal muscle strips. Results: The expression of PDGF, AngII, TNF$\alpha$, and $H_2O_2$-induced activation of HSP27, p38MAPK, ERK1/2, and SAPK/JNK was higher in the smooth muscle cells than the control. SB203580 (30${\mu}$M), a p38MAPK inhibitor, increased the level of HSP27 phosphorylation induced by stimulators in smooth muscle cells. Furthermore, the age-related and starvation-induced activation of HSP27 was higher in skeletal muscle cells (L6 myoblast cell lines) and muscle strips than the control. Conclusion: These results suggest, in part, that the activity of HSP27 and MAPKs affect stressors, such as PDGF, AngII, TNF$\alpha$, $H_2O_2$, and starvation in rat smooth and skeletal muscles. However, more systemic research will be needed into physical therapy, including thermotherapy, electrotherapy, radiotherapy and others.

  • PDF

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Osteoclast Differentiation Factor Engages the PI 3-kinase, p38, and ERK pathways for Avian Osteoclast Differentiation

  • Kim, Hong-Hee;Kim, Hyun-Man;Kwack, Kyu-Bum;Kim, Si-Wouk;Lee, Zang-Hee
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.421-427
    • /
    • 2001
  • Osteoclasts, cells primarily involved in bone resorption, originate from the hematopoietic precursor cells of the monocyte/macrophage lineage and differentiate into multinucleated mature forms. We developed an in vitro osteoclast culture system using embryonic chicken bone marrow cells. This culture system can be utilized in studies on the differentiation and function of osteoclasts. Phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinases (MAPKs) have been implicated in diverse cellular functions including proliferation, migration, and survival. Using the developed avian osteoclast culture system, we examined the involvement of these kinases in osteoclast differentiation by employing specific inhibitors of the kinases. We Found that the inhibition of the PI 3-kinase, p38, or ERK interfered with osteoclast formation, suggesting that the signaling pathways that involve these molecules participate in the process of chicken osteoclast differentiation.

  • PDF

IgE 매개 RBL-2H3 세포 활성화에 대한 정향 에탄올 추출물의 억제 효과 (Inhibitory Effects of Syzygium aromaticum Ethanol Extracts on IgE Mediated RBL-2H3 cell Activation)

  • 정준희;김용민;박종필;김태연;김이화
    • Korean Journal of Acupuncture
    • /
    • 제31권1호
    • /
    • pp.14-19
    • /
    • 2014
  • 목적 : 본 연구에서는 정향 에탄올 추출물이 RBL-2H3 세포 매개 알레르기 반응에 대해 미치는 영향과 그 작용기전에 대해 연구했다. 방법 : 정향 에탄올 추출물의 RBL-2H3 세포에 대한 독성 여부는 MTT 분석을 통해 평가했다. 정향 에탄올 추출물의 항알러지 작용은 효소결합면역 분석방법(ELISA)을 이용해 ${\beta}$-Hexosaminidase과 Histamine의 분비량을 측정하여 평가하였다. 정향 에탄올 추출물의 작용기전에 대해서는 유사 분열물질-활성화단백질인산화효소(mitogen-activated protein kinase, MAPK)를 western blot 법을 이용하여 측정함으로써 평가하였다. 결과 : 정향의 에탄올 추출물은 RBL-2H3 세포에 대해 독성을 나타내지 않는 농도에서 RBL-2H3 세포의 탈과립과 히스타민 분비를 유의하게 억제하였으며, p38 MAPK의 활성을 차단하였다. 결론 : 본 연구의 결과 정향의 에탄올 추출물은 비만세포에서 유래된 알러지 반응을 억제하는 효과가 있으며, 또한 그 작용기전은 p38 MAPK 인산화와 연계되어 있을 것으로 사료된다.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.