• Title/Summary/Keyword: p38 MAPK signaling pathway

Search Result 155, Processing Time 0.027 seconds

IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways

  • Ismail, Hassan Ahmed Hassan Ahmed;Kang, Byung-Hun;Kim, Jae-Su;Lee, Jae-Hyung;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.613-622
    • /
    • 2017
  • IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.

Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells (간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과)

  • Joo, Ye-Jin;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

Anti-inflammatory Activity of Cynanchi Atrati Radix Et Rhizoma Water Extracts via Regulation of MAPK in LPS-induced Murine Macrophage Cell Line, RAW 264.7 (LPS로 유도된 마우스 대식세포주인 RAW264.7에서 MAPK 조절에 의한 백미 물추출물의 항염증 활성)

  • Lee, Sang-Ho;Yoo, Ji-Hyun;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.37 no.6
    • /
    • pp.19-28
    • /
    • 2022
  • Objectives : To develop natural ingredients that help prevent or treat anti-inflammatory-related diseases and use themas basic data, we investigated anti-inflammatory activity of Cynanchi Atrati Radix Et Rhizoma water extracts(CWE) in lipopolysaccharide(LPS)-induced murine macrophage cell line, RAW 264.7 cells. Methods : The cell viabilities were evaluated with RAW 264.7 cells. The production of nitric oxide(NO), prostaglandin E2(PGE2), pro-inflammatory cytokines such tumor necrotic factor(TNF)-α and interleukin(IL)-6 were assessed in LPS-induced RAW 264.7 cell treated with CWE. Furthermore, the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), and mitogen-activated protein kinase(MAPK) were assessed by western blotting. Results : In RAW 264.7 cell, the cell viability by CWE treatment was more than 98.4% at a concentration of 100-400 ㎍/mL. At a concentration of 800 ug/ml of CWE, the cell viability was as low as 86%. At doses of 100, 200 and 400 ㎍/mL, CWE inhibited the production of NO, PGE2, TNF-𝛼 and IL-6 in a dose-dependent manner and also decreased the expression of iNOS and COX-2 from LPS-induced RAW 264.7 cells. In addition, CWE significantly inhibited the MAPK pathway including decreased the phosphorylation of the p38, c-Jun N-terminal kinase(JNK) and extracellular signal-regulated kinase(ERK1/2). Conclusions : Our study provides evidence that CWE inhibits the production of main pro-inflammatory molecules in LPS-induced RAW 264.7 cells via expression of p38, JNK, and ERK1/2 MAPK signaling pathways. Therefore, CWE is expected to be widely used as a natural ingredient for anti-inflammatory functional foods or pharmaceuticals in the future.

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF

Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes

  • Lee, Jeong-Oog;Hwang, So-Hyeon;Shen, Ting;Kim, Ji Hye;You, Long;Hu, Weicheng;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.354-360
    • /
    • 2021
  • Background: Protopanaxatriol (PPT) is a secondary intestinal metabolite of ginsenoside in ginseng. Although the effects of PPT have been reported in various diseases including cancer, diabetes and inflammatory diseases, the skin protective effects of PPT are poorly understood. Methods: HaCaT cells were treated with PPT in a dose-dependent manner. mRNA and protein levels which related to skin barrier and hydration were detected compared with retinol. Luciferase assay was performed to explore the relative signaling pathway. Western blot was conducted to confirm these pathways and excavated further signals. Results: PPT enhanced the expression of filaggrin (FLG), transglutaminase (TGM)-1, claudin, occludin and hyaluronic acid synthase (HAS) -1, -2 and -3. The mRNA expression levels of FLG, TGM-1, HAS-1 and HAS-2 were suppressed under NF-κB inhibition. PPT significantly augmented NF-κB-luc activity and upregulated Src/AKT/NF-κB signaling. In addition, PPT also increased phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK, JNK and p38 and upstream MAPK activators (MEK and MKK). Furthermore, transcriptional activity of AP-1 and CREB, which are downstream signaling targets of MAPK, was enhanced by PPT. Conclusion: PPT improves skin barrier function and hydration through Src/AKT/NF-κB and MAPK signaling. Therefore, PPT may be a valuable component for cosmetics or treating skin disorders.

The effects of Somok on apoptosis of human liver cancer HepG2 cell. (소목(蘇木)이 사람 간암 세포주인 HepG2의 세포사멸에 미치는 영향과 그 경로)

  • Kim, Pan-Jun;Yun, Hyun-Joung;Lee, Young-Tae;Seo, Kyo-Soo;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The purpose of this study was to investigate the anticancer effects of Caesalpiniae Lignum (Somok) on HepG2 cells, a human liver cancer cell line. To study the cytotoxic effect of Caesalpiniae Lignum methanol extract (CL-MeOH) on HepG2 cells, the cells were treated with various concentrations of CL-MeOH and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. CL-MeOH reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of CL-MeOH. The activation of caspase 3 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, was examined by western blot analysis. CL-MeOH decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration> $200{\mu}/ml$. Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. CL-MeOH-induced MAPK activation was examined by Western blot for phosphorylated ERK, p38 and JNK. CL-MeOH significantly increased p38 phosphorylation and JNK phosphorylation in a dose-dependent manner. Inhibition of p38 function using the selective inhibitor SB20358O results in inhibition of apoptosis by CL-MeOH. These results suggest that CL-MeOH-induced apoptosis is MAP kinase-dependent apoptoric pathway. These results suggest that CL-MeOH is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

[Retraction]Anti-inflammatory activity of a short peptide designed for anti-cancer: a beneficial off-target effect of tertomotide ([논문철회]항암백신 tertomotide의 항염활성 연구)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2022
  • Tertomotide is a peptide vaccine developed for anti-cancer therapy. Since it has been found to ameliorate inflammatory symptoms in animal studies and clinical test, we investigated anti-inflammation activity of the tertomotide and the mechanism of action in monocyte in order to assess if tertomotide may serve as an anti-inflammatory agent by checking inflammatory cytokines and related signaling pathway following tertomotide treatment. We found that tertomotide reduced the level of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-8 in LPS- or PMA-stimulated monocyte cell line and suppressed NF-κB signaling including the activation of ERK1/2 and P38 MAPK following TNF-α treatment. These results may correlate to the beneficial findings in animal studies, implicating that tertomotide may act as a potential anti-inflammatory agent. This study is an exemplary case for convergence that a computationally designed peptide for immunological purpose exerting unexpected biological activity may elicit novel anti-inflammatory drug.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

Parkin Induces MMP-3 Expression in Human Cervical Cancer Cells

  • Lee, Min Ho;Jung, Byung Chul;Jung, Bae Dong;Lee, In-Soo;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Parkin is known to be a tumor suppressor protein. Previously, we determined that parkin expression restores susceptibility to TNF-${\alpha}$-induced death of HeLa cells, a human cervical cancer cell line resistant to TNF-${\alpha}$-induced cell death. MMP-3 is a zinc-dependent protease recently reported to activate intracellular apoptotic signaling. In this study we examined the regulation of MMP-3 expression by parkin in TNF-${\alpha}$-treated HeLa cells. Furthermore, we investigated the signaling pathway involved in parkin-induced expression of MMP-3. We found that HeLa cells exhibit low levels of MMP-3 but is induced after introduction of the parkin gene into HeLa cells. Furthermore, MMP-3 expression increased further when parkin expressing cells were treated with TNF-${\alpha}$. Using chemical inhibitors of cell signaling pathways, we found that MEK-1 (PD98059), PI3K (LY294002), p38 MAPK (SB203580), and JNK inhibitors alleviated parkin-induced up-regulation of MMP-3. Finally, we show that TNF-${\alpha}$-induced cell death in parkin expressing cells is inhibited by using a MMP-3 inhibitor. These results suggest that parkin expression induces prolonged expression of MMP-3 via MEK-1, PI3K, MAPK, and JNK pathway in HeLa cells allowing the HeLa cells to become sensitive to TNF-${\alpha}$-induced cell death. These results implicate a role of MMP-3 in parkin-induced cell death in TNF-${\alpha}$ treated HeLa cells.

HMGB1 Promotes the Synthesis of Pro-IL-1β and Pro-IL-18 by Activation of p38 MAPK and NF-κB Through Receptors for Advanced Glycation End-products in Macrophages

  • He, Qiang;You, Hong;Li, Xin-Min;Liu, Tian-Hui;Wang, Ping;Wang, Bao-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1365-1370
    • /
    • 2012
  • The high mobility group box-1 (HMGB1) protein and NALP3 inflammasome have been identified to play important roles in inflammation and cancer pathogenesis, but the relationships between the two and cancer remain unclear. The current study investigated the relationship between HMGB1 and the NALP3 inflammasome in THP-1 macrophages. HMGB1 was found unable to activate the NALP3 inflammasome and failed to induce the release of the IL-$1{\beta}$ and IL-18 in THP-1 macrophages. HMGB1 was also found significantly enhanced the activity of ATP to induce IL-$1{\beta}$ and IL-18 by the induction of increased expression of pro-IL-$1{\beta}$ and pro-IL-18. This process was dependent on activation of RAGE, MAPK p38 and NF-${\kappa}B$ signaling pathway. These results demonstrate that HMGB1 promotes the synthesis of pro-IL-$1{\beta}$ and pro-IL-18 in THP-1 macrophages by the activation of p38 MAPK and NF-${\kappa}B$ through RAGE. HMGB1 likely plays an important role in the first step of the release of the IL-$1{\beta}$ and IL-18, preparing for other cytokines to induce excessive release of IL-$1{\beta}$ and IL-18 which promote inflammation and cancer progression.