• Title/Summary/Keyword: p21CIP1/WAF1

Search Result 104, Processing Time 0.027 seconds

Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells (MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향)

  • Hong, Sang-hoon;Han, Min-ho;Choi, Yung-hyun;Park, Sang-eun
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.

Induction of Apoptosis by Vitamin E Succinate in Human Erythroleukemia K562 Cells (인간 만성백혈병 세포주에서의 Vitamin E Succinate에 의한 세포사멸 유도)

  • Jang, Chang-Deug;Kim, Jong-Myoung;An, Won-Geun;Park, Hye-Ryoun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.896-904
    • /
    • 2007
  • Regulation mechanism of apoptosis has been known to be important for understanding the pathogenesis of a number of human diseases including cancers. The effects of $RRR-{\alpha}-tocopheryl$ succinate(vitamin E succinate, VES) on the cell viability, generation of ROS, expression of proteins involved in apoptosis, and growth of human chronic myelogenous leukemia K562 cells were analyzed in this study. VES treatment not only induced the generation of the ROS but also increased the levels of $NF-{\kappa}B$, COX-2, and $p21^{WAF1/CIP1}$ in K562 cells. It modulates the levels of pro-apoptotic proteins such as Bax provoking the apoptosis in K562 cells. The cleavage of PARP into 89 kDa was also increased upon VES treatment in a dosage-dependent manner. Induction of an apoptosis was evident by the increase of sub-Gl peak and cell shrinkage condensed chromatin in K562 cells treated with VES. It also resulted in an inhibition of tumor growth by 50% and prolonged survival of the Iymphoma-induced mice. This potentiation of VES obtained in vitro and in vivo may indicate the feasibility of more effective chemotherapy in chronic myelogenous leukemia.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.

Cell Cycle Arrest by Sabaek-san is Associated with induction of Cdk Inhibitor p21 in Human Lung Cancer A549 Cells (사백산에 의한 인체 폐암세포의 G1기 성장억제기전에 관한 연구)

  • Kang Byong Ryeung;Oh Chang Sun;Lee Jae Hun;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1177-1183
    • /
    • 2002
  • We investigated the effects of Sabaek-san (SBS) water extract on the cell proliferation of human lung carcinoma A549 cells. SBS treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner. This anti-proliferative effect of A549 cells by SBS treatment was associated with morphological changes such as membrane shrinking and cell rounding up. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by SBS treatment in a concentration-dependent manner. SBS treatment induced a marked accumulation of tumor suppressor p53 and a concomitant induction of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP, which appears to be transcriptionally upregulated and is p53 dependent. In addition, SBS treatment resulted in down-regulation of cyclooxygenase-2 (COX-2) as determined by RT-PCR analysis. The present results indicated that SBS-induced inhibition of lung cancer cell proliferation is associated with the blockage of G1/S progression the induction of apoptosis.

Effect of Phellinus linteus on Differentiation and Cell Proliferation in Human Leukemia HL-60 cells (상황버섯이 인간 백혈병 세포주인 HL-60 세포의 분화유도 및 증식에 미치는 영향)

  • Choi, Eun-Young;Ju, Seong-Min;Park, Jin-Mo;Park, Jun-Ho;Han, Dong-Min;Jeon, Byung-Hun;Kim, Won-Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1170-1175
    • /
    • 2007
  • We have examined the effect of water extract of Phellinus linteus, a raw material of Korean traditional herbal medicine, on the induction of HL-60 cell differentiation. The proliferation of HL-60 cell was inhibited dose-dependently by treatment with various doses of P. linteus extract. It also caused a significant change in NBT reduction (7.5 times). The expression of CD11b and CD14 was increased in the cells treated with the extract, especially in those arrested at G0/G1 stage, which suggested that some components in P. Linteus extract induced HL-60 cell differentiation to granulocytic and monocyte lineages. Moreover, the expression levels of $p21^{WAF1/CIP}$ and $p27^{KIP}$ were up-regulated during HL-60 cell differentiation induced by P. Linteus extract. These results together suggest that P. Linteus extract contains potential HL-60 cell differentiation agents.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Inhibitory Effects of Luteolin Isolated from Ixeris sonchifolia Hance on the Proliferation of HepG2 Human Hepatocellular Carcinoma Cells

  • Yee, Su-Bog;Lee, Jung-Hwa;Chung, Hae-Young;Im, Kwang-Sik;Bae, Song-Ja;Choi, Jae-Soo;Kim, Nam-Deuk
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • We investigated the anti-proliferative effects of luteolin and apigenin, isolated from Ixeris sonchifolia Hance, on HepG2 human hepatocellular carcinoma cells. In MTT assay luteolin showed more efficient anti-proliferative effects on cells than apigenin did. According to propidium iodide staining and flow cytometry studies, we postulated that these effects might be a result of cell cycle arrest. Hence we examined the changes of protein expressions related to cell cycle arrest. Western blotting data demonstrated that the down-regulated expression of CDK4 was correlated to the increase of p53 and CDK inhibitor $p21^{WAF1/CIP1}$ protein. These data suggest that luteolin may have potential as an anti-cancer agent.

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon;Kim, Soo Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.620-627
    • /
    • 2014
  • We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

IMMUNOHISTOCHEMICAL STUDY OF P21 AND P53 EXPRESSION IN AMELOBLASTOMA (법랑아세포종에서 p21 및 p53 발현에 관한 면역조직화학적 연구)

  • Shin, Dong-Joon;Myoung, Hoon;Hwang, Kyeng-Kyun;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • The p53 protein was discovered in 1979 as cellular 53-kD nuclear phosphoprotein bound to the large transforming antigen of SV40 virus. $P21^{WAF1/CIP1}$, which has been described as the critical downstream mediator of p53, is known to suppress DNA replication and arrest the G1 cell cycle by quaternary complex with cyclin D, cyclin-dependent kinase(CDK) and proliferating cell nuclear antigen(PCNA). In these days, some studies shows that the p21 can be induced by independent pathways. There are various reports about the expression of p21 (67%.82.4%) in oral squamous cell carcinoma. But these studies are mostly done in malignant tumor not in benign tumor. So we decided to study the expression of p21 in ameloblastoma and the relationship between p53 and p21 as a downstream mediator of p53 in ameloblastoma. We investigated the expression of p21 and p53 with the method of immunohistochemistry. We selected 30 cases of ameloblastoma tissue blocks (acanthomatous type: 5 cases, follicular type: 8 cases, plexiform type: 17 cases) imbedded in paraffin. We used 30 cases of normal gingival tissues and 30 cases of squamous cell carcinoma tissues (SCC) respectively and compared their results with those of ameloblastoma. We made slides with the streptavidin-biotin methods and used monoclonal antibody DO-7 (Novocastra, Newcastle, United Kingdom) as p53 antibody and monoclonal antibody M7202 (DAKO, California, U.S.A.) as p21 antibody. We used Pearson's correlation coefficient to analyse the relationship. The results were as follows: 1. p21 was expressed in ameloblastoma about 30% and this is lower than that of normal gingiva and SCC. 2. In normal gingiva and ameloblastoma, p21 expression was correlated with p53 expression. 3. In SCC, p21 were expressed about 83.3% and this is more than that of p53. But there was no correlation between p21 and p53 expression. We confirmed p21 expression and relation with p53 in ameloblastoma. But, to confirm the function of p21, more studies about p21 expression in malignant ameloblastoma and ameloblastic carcinoma are needed.

Effect of Resveratrol on the Induction of Cdk Inhibitor p21 and Pro-apoptotic Bax Expression by amyloid-β in Astroglioma C6 Cells (신경교 세포에서 resveratrol이 amyloid-β에 의해 유도되는 Cdk inhibitor p21 및 Bax 발현의 감소 효과)

  • Kim Young Ae;Lim Sun-Young;Ko Woo Shin;Choi Byung Tae;Lee Yong Tae;Rhee Sook-Hee;Park Kun-Young;Lee Won-Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.169-175
    • /
    • 2005
  • Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin found in grape skins, peanuts, and red wine, has been reported to have a wide range of biological and pharmacological properties. $Amyloid-\beta$ deposition and senile plaque-associated astrocytes are common neuropathological features of Alzheimer's disease. In this study, we have explored the effects of resveratrol on $amyloid-\beta-peptide-mediated$ cytotoxicity in vitro and modulation of cell growth-regulatory gene products in astroglioma C6 cells to elucidate its possible mechanism for anti-cytotoxicity. Exposure of C6 cells to $Amyloid-\beta$ resulted in dose-dependent growth inhibition and morphological changes of C6 cells, which were recovered by pre-treatment with resveratrol. The anti-proliferative effect of $amyloid-\beta$ was associated with the induction of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAF1/CIP1) expression assessed by RT-PCR and Western blot analysis in time-dependent manner in C6 cells. In addition, the pro-apoptotic Bax expression was also up-regulated in $amyloid-\beta-treated$ C6 cells without alteration of anti-apoptotic Bcl-2 and $Bcl-X_L$ expression. However, pre-treatment of resveratrol significantly inhibited $amyloid-\beta-induced$ p53, p21 and Bax levels, suggesting that the modulation of p53, p21 and Bax levels could be one of the possible pathways by which resveratrol functions as anti-cytotoxic agent. Our results demonstrate that resveratrol may enhance the protection against $amyloid-\beta-induced$ cytotoxicity by promoting the survival of glial cells.