Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0157

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells  

Lee, Young-Hoon (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Kim, Soo Young (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Bae, Young-Seuk (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Abstract
We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.
Keywords
miRNA; human lung fibroblast; protein kinase CK2; reactive oxygen species; replicative senescence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Garzon, R., and Calin, G.A, (2009). Croce CM. MicroRNAs in cancer. Annu. Rev. Med. 60, 167-179.   DOI   ScienceOn
2 Goldstein, S. (1990). Replicative senescence: the human fibroblast comes of age. Science 249, 1129-1133.   DOI
3 Jang, S.Y., Kim, S.Y., and Bae, Y.S. (2011). p53 deacetylation by SIRT1 decreases during protein kinase CK2 downregulationmediated cellular senescence. FEBS Lett. 585, 3360-3366.   DOI   ScienceOn
4 Jeon, S.M., Lee, S.J., Kwon, T.K., Kim, K.J., and Bae, Y.S. (2010). NADPH oxidase is involved in protein kinase CK2 downregulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Lett. 584, 3137-3142.   DOI   ScienceOn
5 Jung, H.J., and, Suh, Y. (2012). MicroRNA in aging: from discovery to biology. Curr. Genomics 13, 548-557.   DOI
6 Kang, J.Y., Kim, J.J., Jang, S.Y., and Bae, Y.S. (2009). The p53-$p21^{CiP1/WAF1}$ pathway is necessary for cellular senescence induced by the inhibition of protein kinase CK2 in human colon cancer cells. Mol. Cells 28, 489-494.   DOI   ScienceOn
7 Kim, V.N, Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139.   DOI   ScienceOn
8 Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.   DOI   ScienceOn
9 Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.   DOI   ScienceOn
10 Kim, S.Y., Lee, Y.H., and Bae, Y.S. (2012). miR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting $\alpha$ subunit of protein kinase CKII in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 429, 173-179.   DOI   ScienceOn
11 Robles, S.J., and Adami, G.R. (1998). Agents that cause DNA double strand breaks lead to $p16^{INK4a}$ enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113-1123.   DOI   ScienceOn
12 Ruzzene, M., and Pinna, L.A. (2010). Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim. Biophys. Acta 1804, 499-504.   DOI   ScienceOn
13 Ryu, S.W., Woo, J.H., Kim, Y.H., Lee, Y.S., Park, J.W., and Bae, Y.S. (2006). Down-regulation of protein kinase CK2 is associated with cellular senescence. FEBS Lett. 580, 988-994.   DOI   ScienceOn
14 Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Bypass of senescence after disruption of $p21^{CIP1/WAF1}$ gene in normal diploid human fibroblasts. Science 277, 831-834.   DOI   ScienceOn
15 Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and $p16^{INK4a}$. Cell 88, 593-602.   DOI   ScienceOn
16 Zhu, J., Woods, D., McMahon, M., and Bishop, J.M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997-3007.   DOI   ScienceOn
17 Bayreuther, K., Rodemann, H.P., Hommel, R., Dittmann, K., Albiez, M., and Francz, P.I. (1998). Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl. Acad. Sci. USA 85, 5112-5116.
18 Choi, S.E., and Kemper, J.K. (2013). Regulation of SIRT1 by micro-RNAs. Mol. Cells 36, 385-392.   DOI
19 Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367.   DOI   ScienceOn
20 Lee, Y.H., Yuk, H.J., Park, K.H., and Bae, Y.S. (2013). Coumestrol induces senescence through protein kinase CKII inhibitionmediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem. 141, 381-388.   DOI   ScienceOn
21 Lee, Y.H., Kang, B.S., and Bae, Y.S. (2014). Premature senescence in human breast cancer and colon cancer cells by tamoxifenmediated reactive oxygen species generation. Life Sci. 97, 116-122.   DOI   ScienceOn
22 Noren Hooten, N., Abdelmohsen, K., Gorospe, M., Ejiogu, N., Zonderman, A.B., and Evans, M.K. (2010). microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5, e10724.   DOI   ScienceOn
23 Marasa, B.S., Srikantan, S., Martindale, J.L., Kim, M.M., Lee, E.K., Gorospe, M., and Abdelmohsen, K. (2010). MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging 2, 333-343.   DOI
24 Mavrakis, K.J., Van Der Meulen, J., Wolfe, A.L., Liu, X., Mets, E., Taghon, T., Khan, A.A., Setty, M., Rondou, P., Vandenberghe, P., et al. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat. Genet. 43, 673-678.   DOI   ScienceOn
25 Meek, D.W., Simon, S., Kikkawa, U., and Eckhart, W. (1990). The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9, 3253-3260.
26 Park, J.H., Kim, J.J., and Bae, Y.S. (2013). Involvement of PI3KAKT-mTOR pathway in protein kinase CKII inhibition-mediated senescence in human colon cancer cells. Biochem. Biophys. Res. Commun. 433, 420-425.   DOI   ScienceOn
27 Rivlin, N., Brosh, R., Oren, M., and Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2, 466-474.   DOI   ScienceOn
28 Pichiorri, F., Suh, S.S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, D.M. Jr., Hofmainster, C., Alder, H., et al. (2010). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367-381.   DOI   ScienceOn
29 Duncan, J.S., and Litchfield, D.W. (2008). Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33-47.   DOI   ScienceOn
30 Chen, Q.M., Bartholomew, J.C., Campisi, J., Acosta, M., Reagan, J.D., and Ames, B.N. (1998). Molecular analysis of $H_2O_2$-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332, 43-50.   DOI