• Title/Summary/Keyword: p-type Si

Search Result 950, Processing Time 0.038 seconds

Investigation of X-ray-induced Defects on Metals and Silicon by Using Coincidence Doppler Broadening Positron Annihilation Spectroscopy

  • Lee, C.Y.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1895-1898
    • /
    • 2018
  • The mechanical properties of Al, Ti, Fe, and Cu metals p-type Si, and n-type Si were investigated by using coincidence Doppler broadening (CDB) positron annihilation spectroscopy. The samples in this experiment were irradiated by using X-rays at generating powers for up to 9 kW. The data taken after the irradiation showed all the characteristic features predicted from defects with vacancies. The S parameter values of the metals were generally less than those of semiconductors such as p-type Si and n-type Si. The relationship between n-type Si and p-type Si were more affected when n-type Si rather than p-type Si was irradiated with X-rays.

The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성)

  • 이용주;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Fabrication and characterization of n-IZO / p-Si and p-ZnO:(In, N) / n-Si thin film hetero-junctions by dc magnetron sputtering

  • Dao, Anh Tuan;Phan, Thi Kieu Loan;Nguyen, Van Hieu;Le, Vu Tuan Hung
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • Using a ceramic target ZnO:In with In doping concentration of 2%, hetero-junctions of n-ZnO:In/p-Si and p-ZnO:(In, N)/n-Si were fabricated by depositing Indium doped n - type ZnO (ZnO:In or IZO) and Indium-nitrogen co-doped p - type ZnO (ZnO:(In, N)) films on wafers of p-Si (100) and n-Si (100) by DC magnetron sputtering, respectively. These films with the best electrical and optical properties were then obtained. The micro-structural, optical and electrical properties of the n-type and p-type semiconductor thinfilms were characterized by X-ray diffraction (XRD), RBS, UV-vis; four-point probe resistance and room-temperature Hall effect measurements, respectively. Typical rectifying behaviors of p-n junction were observed by the current-voltage (I-V) measurement. It shows fairly good rectifying behavior with the fact that the ideality factor and the saturation current of diode are n=11.5, Is=1.5108.10-7 (A) for n-ZnO:In/p-Si hetero-jucntion; n=10.14, Is=3.2689.10-5 (A) for p-ZnO:(In, N)/n-Si, respectively. These results demonstrated the formation of a diode between n-type thin film and p-Si, as well as between p-type thin film and n-Si..

Electrical characteristics of polycrystalline 3C-SiC thin film diodes (다결정 3C-SiC 박막 다이오드의 전기적 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

알칼리 금속을 도핑한 BaSi2의 p-type 특성 분석

  • Im, Jae-Hu;Hong, Chang-Ho;Lee, Tae-Hun;Yun, Yong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.392-397
    • /
    • 2017
  • 알칼리 금속을 도핑한 $BaSi_2$의 p-type 특성에 대하여 이해하기 위하여 density functional theory(DFT) 방법을 바탕으로 하는 결함 계산을 진행하였다. 우선 $BaSi_2$의 Si, Ba vacancies에 대해 계산을 진행하여서 도핑을 하지 않았을 때의 특성에 대해 이해해 보았다. 다음으로 알칼리 금속을 도핑한 구조의 p-type 특성과 비교 분석을 진행하기 위해서 잘 알려진 p-type dopants인 Al, In, Ag을 치환형으로 도핑한 구조의 특성에 대해 분석해 보았다. 마지막으로 알칼리 금속을 도핑하였을 때의 p-type 특성에 대해 계산해 보았고, K을 도핑하였을 때 잘 알려진 p-type dopants보다 더 나은 p-type 특성을 가질 수 있음을 보였다.

  • PDF

Fabrication of polycrystalline 3C-SiC thin film diodes (다결정 3C-SiC 박막 다이오드의 제작)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.348-349
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, Hz, and Ar gas at $1180^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si(n-type) structure was fabricated. Its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84 V, over 140 V, 61nm, and $2.7\;{\times}\;10^{19}\;cm^3$, respectively. The p-n junction diodes fabricated on the poly 3C-SiC/Si(p-type) were obtained like characteristics of single 3C-SiC p-n junction diodes. Therefore, poly 3C-SiC thin film diodes will be suitable microsensors in conjunction with Si fabrication technology.

  • PDF

The characteristics of Efficiency through HIT layer thickness (HIT 층 두께 변화를 통한 태양전지 효율 특성)

  • Kim, Moo-Jung;Pyeon, Jin-Ho;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.232-232
    • /
    • 2010
  • Simulation Program (AFORS-HET 2.4.1) was used, include the basic structure of crystalline silicon thin film as above, under the intrinsic a-Si:H films bonded symmetrical structure (Symmetrical structure) were used. The structure of ITO, a-Si p-type, intrinsic a-Si, c-Si, intrinsic a-Si, a-Si n-type, metal (Al) layer has one of the seven. When thickness for each layer was given the change, the changes of a-Si p-type layer and the intrinsic a-Si layer on top had an impact on efficiency. Efficiency ratio of p-type a-Si:H layer thickness was sensitive to, especially a-Si: H layer thickness is increased in a rapid decrease in Jsc and FF, and efficiency was also decreased.

  • PDF

Electrical and Optical Properties of Violet-Sensitive $SnO_2-SiO_2-Si$(n-p) Type Photocell (자색광에 민감한 $SnO_2-SiO_2-Si$(n-p)형 광전지의 전기적광하적특성)

  • 김유신
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 1977
  • We have obtained a violet-sensitive photocell as a part of the developing project on such type of solar cell. The photocell has the structure of SnO2-SiO2-Si MOS coupled on Si n-p homojuction. It is not relevant to use as a solar cell because of its small photovoltaic power(0.25V, 150$mutextrm{A}$), however, since the spectral response of the cell is shifted toward the violet band region and its switching speed is fairly high in comparison with those of the Si p-n homojunction type solar cell, it is expected that we will be able to find mere novel utilities than the ordinary silicon photocell.

  • PDF

Epitaxial Layer Growth of p-type 4H-SiC(0001) by the CST Method and Electrical Properties of MESFET Devices with Epitaxially Grown Layers (CST 승화법을 이용한 p-type 4H-SiC(0001) 에픽텍셜층 성장과 이를 이용한 MESFET 소자의 전기적 특성)

  • Lee, Gi-Sub;Park, Chi-Kwon;Lee, Won-Jae;Shin, Byoung-Chul;Nishino, Shigehiro
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1056-1061
    • /
    • 2007
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. In this study, we aimed to systematically investigate surface morphologies and electrical properties of SiC epitaxial layers grown with varying a SiC/Al ratio in a SiC source powder during the sublimation growth using the CST method. The surface morphology was dramatically changed with varying the SiC/Al ratio. When the SiC/Al ratio of 90/1 was used, the step bunching was not observed in this magnification and the ratio of SiC/Al is an optimized range to grow of p-type SiC epitaxial layer. It was confirmed that the acceptor concentration of epitaxial layer was continuously decreased with increasing the SiC/Al ratio. 4H-SiC MESFETs haying a micron-gate length were fabricated using a lithography process and their current-voltage performances were characterized. It was confirmed that the increase of the negative voltage applied on the gate reduced the drain current, showing normal operation of FET device.

Synthesis and characterization of silanized-SiO2/povidone nanocomposite as a gate insulator: The influence of Si semiconductor film type on the interface traps by deconvolution of Si2s

  • Hashemi, Adeleh;Bahari, Ali
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1546-1552
    • /
    • 2018
  • The polymer nanocomposite as a gate dielectric film was prepared via sol-gel method. The formation of crosslinked structure among nanofillers and polymer matrix was proved by Fourier transform infrared spectroscopy (FT-IR). Differential thermal analysis (DTA) results showed significant increase in the thermal stability of the nanocomposite with respect to that of pure polymer. The nanocomposite films deposited on the p- and n-type Si substrates formed very smooth surface with rms roughness of 0.045 and 0.058 nm respectively. Deconvoluted $Si_{2s}$ spectra revealed the domination of the Si-OH hydrogen bonds and Si-O-Si covalence bonds in the structure of the nanocomposite film deposited on the p- and n-type Si semiconductor layers respectively. The fabricated n-channel field-effect-transistor (FET) showed the low threshold voltage and leakage currents because of the stronger connection between the nanocomposite and n-type Si substrate. Whereas, dominated hydroxyl groups in the nanocomposite dielectric film deposited on the p-type Si substrate increased trap states in the interface, led to the drop of FET operation.