• Title/Summary/Keyword: p-atom

Search Result 337, Processing Time 0.033 seconds

The Crystal and Molecular Structure of Theophylline Hydrochloride (Theophylline 鹽酸鹽의 結晶 및 分子構造)

  • Chung Hoe Koo;Hyun So Shin;Sun Suk Oh
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.86-94
    • /
    • 1978
  • The crystal and molecular structure of theophylline hydrochloride has been determined from X-ray data by Patterson techniques. The structure has been refined by block-diagonal least-squares and Fourier synthesis on three dimensional data. The unit cell is orthorhombic, space group $P_{na21}$, with a = 14.01, b = 11.49, c = 6.77${\AA}$, and contains four molecules. The final R value based on 743 observed reflexions is 12.2%. The intramolecular distances are similar to those in other compounds containing a purine or pyrimidine group. The molecules are nearly planar and are stacked in layers parallel to the (001)plane. The chlorine atom is coordinated to N(1) atom at a distance of 3.06${\AA}$. The structure is stabilized mainly by van der Waals interactions; however, a short N${\cdot}{\cdot}{\cdot}$Cl contact of length $3.06\AA$, which is slightly less than the expected van der Waals separation, suggest that weak charge transfer interaction may be present. The relationship between this structure and the known structures of theophylline monohydrate and caffeine monohydrate are discussed.

  • PDF

Temperature-dependent Sb-induced facetting of Si(5 5 12)-$2{\times}1$ from (225)/(112) to (113)/(335): Role of Sb-inserted 5-7-5 rings of Si surfaces.

  • Dugerjav, Otgonbayar;Kim, Hi-Dong;Duvjir, Ganbat;Li, Huiting;Seo, Jae-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.89-89
    • /
    • 2010
  • The atomic structure of Sb/Si(5 5 12)-$2{\times}1$ surface, deposited at room temperature (RT) and post-annealed, has been identified by scanning tunneling microscopy and the corresponding interface has been studied by synchrotron core-level photoemission spectroscopy. With 0.3-nm Sb deposition at RT and postannealing at $600^{\circ}C$, the surface has been facetted to (225)-$2{\times}1$ and (112)-$1{\times}1$, and its Si 2p has shown that all the Si 2p surface components have disappeared, while the single Sb-Si interfacial component has appeared. Such results indicate that all of surface Si atoms are replaced by Sb atoms and the charge is transferred from Si to passivating Sb-atoms at the top layer. With subsequent postannealing up to $700^{\circ}C$, the surface has been facetted to (113)-$2{\times}2$ and (335)-$4{\times}2$, still having Sb-Si interfacial component and partially re-exposed Si surface components. From the present study, the role of surfactant atom, Sb, as well as the thermal-stabilization of Sb-passivated high-index Si surface will be exposed. Especially, the key role of the Sb/Si(113)-$2{\times}2$, composed of Rebonded-Dimer-Rebonded atom 1D structures, for stabilization will be discussed.

  • PDF

The Effect of Precursor pH and Calcination Temperature on the Molybdenum Species over Silica Surface (전구체의 pH와 소성 온도가 실리카에 담지된 몰리브드늄 활성종에 미치는 영향)

  • Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.558-561
    • /
    • 2004
  • The morphology of silica supported $MoO_{3}$ catalysts, which was prepared by impregnation of ammonium heptamolybdate(AHM) with various surface loadings up to 4 atoms $Mo/nm^{2}$, was studied using x-ray diffraction(XRD). All morphologies of silica supported $MoO_{3}$ appear to be thermodynamically driven. For high loaded catalysts there appeared three states: a sintered and well-dispersed hexagonal state at moderate temperature calcination($300^{\circ}C$), and a sintered orthorhombic state at high temperature calcination($500^{\circ}C$). Whereas the sintered orthorhombic phase is detected by XRD at loadings in excess of 1.1 atom $Mo/nm^{2}$, the well-dispersed hexagonal phase is not detected even until 4.0 $atomsMo/nm^{2}$. The higher apparent dispersion of the hexagonal phase may arise from some role of ammonia which results in a stronger $MoO_{3}-SiO_{2}$ surface interaction.

  • PDF

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism

  • Um, Ik-Hwan;Min, Se-Won;Chuna, Sun-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1359-1363
    • /
    • 2008
  • Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The $pK_a$ at the center of the Brønsted curvature, defined as $pK_a^o$, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 $\rightarrow$ 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the $k_2/k_{-1}$ ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, $k_1$ has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.

Identification of a Radical Decomposition Pathway(s) of Polycyclic Aromatic Hydrocarbon by the Vibrational Frequency Calculations with DFT Method (DFT법에 의한 진동 운동 진동수 계산을 통한 다고리 방향족 탄화수소의 라디칼 분해 경로 동정)

  • Lee, Byung-Dae;Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.344-351
    • /
    • 2018
  • The IR spectra of gaseous phenanthrene, phenathrenols, phenanthrenyl radicals, and hydroxylphenanthrene radicals have been obtained using the BLYP/6-311++G(d,p) method. A comparison of these spectra shows that the measurements of IR spectra can be valuable to identify the reaction pathway(s) of the phenanthrene decomposition reaction by ${\cdot}OH$. We have found that the H atom abstraction reaction process can be easily identifiable from the $650-850cm^{-1}$ (CH out-of-plane bending) region and the ${\cdot}OH$ addition reaction process from the CH stretching and bending modes region of IR spectra. In addition, the calculated IR spectra of all five phenanthren-n-ols (n = 1, 2, 3, 4, 9) have also given in this work.

Molecular Orbital Study of Binding at the Pt(111)/${\gamma}-Al_2O_3$(111) Interface (Pt(111)/${\gamma}-Al_2O_3$(111) 계면간 결합에 관한 분자 궤도론적 연구)

  • Choe, Sang Joon;Park, Sang Moon;Park, Dong Ho;Huh, Do Sung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.264-272
    • /
    • 1996
  • Cluster models of the Υ-Al2O3(111) and the Pt(111) surfaces have been used in an atom superposition and electron delocalization molecular orbital study of interfacial bond strengths between them. The reduced extents for Al3+ are due to the ratio of oxygen to aluminum atoms. The greater the reduced extent for Al3+ is, the stronger the binding energy is to Pt atoms in a cluster. The oxygen-covered surfaces of Υ-Al2O3(111) are shown to bind more weakly to Pt atoms, while the binding to the oxygen-covered surface formed under oxidizing conditions of Pt atoms is strong. The interfacial bond of platinum-alumina may be possible by a charge-transfer mechanism from the platinum surface to the partially empty O-2p band and Al3+ dangling surface orbital.

  • PDF

Characterization of an Iron- and Manganese-containing Superoxide Dismutase from Methylobacillus Sp. Strain SK1 DSM 8269

  • Seo, Sung Nam;Lee, Jae Ho;Kim, Young Min
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.370-378
    • /
    • 2007
  • A superoxide dismutase was purified 62-fold in seven steps to homogeneity from Methylobacillus sp. strain SK1, an obligate methanol-oxidizing bacterium, with a yield of 9.6%. The final specific activity was 4,831 units per milligram protein as determined by an assay based on a 50% decrease in the rate of cytochrome c reduction. The molecular weight of the native enzyme was estimated to be 44,000. Sodium dodecyl sulfate gel electrophoresis revealed two identical subunits of molecular weight 23,100. The isoelectric point of the purified enzyme was found to be 4.4. Maximum activity of the enzyme was measured at pH 8. The enzyme was stable at pH range from 6 to 8 and at high temperature. The enzyme showed an absorption peak at 280 nm with a shoulder at 292 nm. Hydrogen peroxide and sodium azide, but not sodium cyanide, was found to inhibit the purified enzyme. The enzyme activity in cell-free extracts prepared from cells grown in manganese-rich medium, however, was not inhibited by hydrogen peroxide but inhibited by sodium azide. The activity in cell extracts from cells grown in iron-rich medium was found to be highly sensitive to hydrogen peroxide and sodium azide. One mol of native enzyme was found to contain 1.1 g-atom of iron and 0.7 g-atom of manganese. The N-terminal amino acid sequence of the purified enzyme was Ala-Tyr-Thr-Leu-Pro-Pro-Leu-Asn-Tyr-Ala-Tyr. The superoxide dismutase of Methylobacillus sp. strain SK1 was found to have antigenic sites identical to those of Methylobacillus glycogenes enzyme. The enzyme, however, shared no antigenic sites with Mycobacterium sp. strain JC1, Methylovorus sp. strain SS1, Methylobacterium sp. strain SY1, and Methylosinus trichosproium enzymes.

The Crytal and Molecular Structure of Morpholinothiosemicarbazide (Morpholinothiosemicarbazide의 結晶 및 分子構造)

  • Chung Hoe Koo;Hoon Sup Kim;Hyun So Shin;Yungja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 1973
  • The crystal structure of morpholinothiosemicarbazide has been determined by single crystal X-ray analysis. The lattice constants are a = 4.19(2), b = 6.56(2) and c = 26.67(4)${\AA}$. The unit cell contains 4 molecules and the space group is$P2_12_12_1$. The atomic parameters have been refined by least-squares method to a final R value of 0.07, based on the 651 observed reflexions. The amino nitrogen atom forms hydrogen bonds to the sulfur atoms of the other molecules related by the two-fold screw axis parallel to the a-axis, the distances of the hydrogen bonds being 3.48 and 3.49${\AA}$. On the other hand, the imino nitrogen atom forms a hydrogen bond to the amino nitrogen atom of the other molecule related by the two-fold screw axis parallel to the a-axis, the distance of the hydrogen bond being 3.04${\AA}$. These three hydrogen bonds arrange the molecules around the two-fold screw axis. Apart from the hydrogen bonding system the structure is held together by van der Waals forces.

  • PDF

The Crystal and Molecular Structure of Sulfadiazine (Sulfadiazine의 結晶 및 分子構造)

  • Shin Hyun So;Ihn Gwon Shik;Kim Hoon Sup;Koo Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.329-340
    • /
    • 1974
  • Sulfadiazine, $C_{10}H_{10}N_4O_2S$, forms monoclinic crystals of space group $P21}c$ from a mixture of acetone and ethanol with $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$, and four molecules per cell. Three dimensional photographic data were collected with $CuK\alpha$ radiation. The structure was determined using Patterson and Fourier synthesis methods and refined by block diagonal least-squares methods with isotropic thermal parameter for all non-hydrogen atoms. The final R value was 0.15 for the 1517 observed independent reflections. The dihedral angle between the planes through the benzene ring and the pyrimidine ring is $76^{\circ}$. The conformational angle formed by the projection of the S-C(5) bond with that of N(1)-C(1) where the projection is taken along the S-N(1) bond is $77^{\circ}$. The imino nitrogen atom, N(1), and pyrimidine nitrogen atom, N(3), form intermolecular $N-H{\cdots}N$ hydrogen bond between the molecules related by center of symmetry. Amino nitrogen atom, N(4), forms two intermolecular $N-H{\cdots}O$ hydrogen bonds, with O(1) and O(2) atoms of different molecules separated by b. A two dimensional network of hydrogen bonds form infinite molecular sheets parallel to the (100) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF

Structure of Z-1-Ethyl-2-Nitro-1-Butenyl-(4'-Methyl)-Phenyl Sulfone (Z-1-에칠-2-니트로-1-부텐일-(4'-메칠)-페닐 술폰의 구조)

  • Choong Tai Ahn;Gene B. Carpenter\;Kyong Bae Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.351-354
    • /
    • 1993
  • Z-1-Ethyl-2-nitro-l-butenyl-(4'-methyl)-phenyl sulfone, C$_{13}$H$_{17}$NO$_4$S, Mr = 293.4, monoclinic space group P2$_1$/c, a = 12.194(7), b = 7.290(4), c = 16.532(14)${\AA}$, ${\beta}$ = 103.4(2)$^{\circ}$, V = 1429.5 ${\AA}^3$, Z = 4, D$_c$ = 1.32 gcm$^{-3}$, ${\lambda}$(Mo K${\alpha}$) = 0.71069 ${\AA}$, ${\mu}$ = 2.2 cm$^{-1}$, F(000) = 600, T = 298 K, R = 0.030 for 1762 unique observed reflections with I > 1.0${\sigma}$(I). A molecule has a cis-typed molecular structure having the form of "the substituted butene backbone, C-C(S)=C(NO$_2$)-C, connecting to a sulfur atom with the methylbenzene ring and to a nitro group. The methylbenzene ring and the substituted butene moiety are nearly planar with the maximum deviations from their own molecular planes, 0.018 ${\AA}$ for the C(1) atom of the benzene group and 0.045 ${\AA}$ for the N atom of the NO$_2$ group, respectively. The angles to the plane of the butene backbone are 88.5$^{\circ}$from the plane of the methyl-benzene and 78.6$^{\circ}$from the plane of the nitro group. Rotation of the nitro group from the butene plane seems to reduced contribution of resonance structure involving the nitro group, and resultant repulsion between the O(2) atom of SO$_2$ and the O(3) atom of NO$_2$ appears to be 2.894 ${\AA}$ longer than an expected van der Waals distance of 2.80 ${\AA}$.

  • PDF