• Title/Summary/Keyword: p-adic gamma function

Search Result 5, Processing Time 0.021 seconds

A duplication formula for the double gamma function $Gamma_2$

  • Park, Junesang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.289-294
    • /
    • 1996
  • The double Gamma function had been defined and studied by Barnes [4], [5], [6] and others in about 1900, not appearing in the tables of the most well-known special functions, cited in the exercise by Whittaker and Waston [25, pp. 264]. Recently this function has been revived according to the study of determinants of Laplacians [8], [11], [15], [16], [19], [20], [22] and [24]. Shintani [21] also uses this function to prove the classical Kronecker limit formula. Its p-adic analytic extension appeared in a formula of Casson Nogues [7] for the p-adic L-functions at the point 0.

  • PDF

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

On p-adic analogue of hypergeometric series

  • Kim, Yong-Sup;Song, Hyeong-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 1997
  • In this paper we will study a p-adic analogue of Kummer's theorem[6],[7], which gives the value at x = -1 of a well-piosed $_2F_1$ hypergeometric series.

  • PDF

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].