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A DUPLICATION FORMULA FOR
THE DOUBLE GAMMA FUNCTION T,

JUNESANG CHOI

The double Gamma function had been defined and studied by Barnes
(4], [5], [6] and others in about 1900, not appearing in the tables of the
most well-known special functions, cited in the exercise by Whittaker
and Watson [25, p. 264]. Recently this function has been revived ac-
cording to the study of determinants of Laplacians [8], [11], [15], [16],
[19], [20], [22] and [24]. Shintani [21] also uses this function to prove
the classical Kronecker limit formula. Its p-adic analytic extension ap-
peared in a formula of Casson Nogués [7] for the p-adic L-functions at
the point 0.

Before Barnes, these functions had been introduced under a different
form by Alexeiewsky (1], Glaisher [14], Holder [17] and Kinkelin [18].

Barnes (4] defines the double Gamma function T'y = 1/G satisfying
each of the following pI‘Op( rties:

(a) G(z =1I(z) ), for all complex z,
(b) G(l) = 1,
(c) As n — oo,
4+ 142
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where I' 1s the well-known Gamma function whose Weierstrass' canon-
ical product form is

—z

(1) I(z) =~

ﬁ (1+%)_]ef

k=1

and + is the Euler-Mascheroni’s constant defined by

~ 1
(2) 7= lim (Z -~ log n) >~ (.577215664 ...

k=1
and A is called Glaisher’s (or Kinkelin’s) constant defined by

2 1 '2
(3) logA:nli_Igolog(llf---n")— (%+%+ﬁ) 1ogn+%.

the numerical value of being 1.282427130-- - .
From this definition Barnes deduced the Weierstrass’ canonical prod-
uct form of the double Gamma function: '

(4)
1 L2 2 ha Z k —z 22
To(z+1)7! :G(z+1):(27r)7e“5{1+7)‘ + }klill(l—}—z-) et

The Legendre duplication formula for I is given [25, p. 240}

(5) 2271127 (2 + %) = /7T(2z).

The object of the present note is to prove a duplication formula for
rgf

1 2 1 2 ir1
(6) FQ(G)FQ (a “+ ;) I‘g(a + 1) = 6_3A322a 3oty 7!'5-“112(2&).

We can define the Gamma function I' by using the Bohr-Mollerup
theorem ([3, p. 14] and [12, p. 179]). By analogy Vignéras ([23, p.
239], Proposition 2.8) gives the criteria for the double Gamma function
and more generally for the n-ple Gamma functions I'p,, n > 1. For our
purpose we reduce her proposition to the double Gamma function as in
the following:
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A duplication formula for the double Gamma function I's

THEOREM. There exists a unique meromorphic function f(z) such
that

(a) F(1) =1,
(b) f(z4+1) =T(z)f(z), for all complex z,
(c) For z > 1, f(z) is infinitely differentiable,
d’f(z)
bl A S ) > 0.
o5 log f(z) 20
It is not difficult to check that the G-function in (4) satisfies all the
criteria in Theorem and so f(z) = G(z) for all complex =.
From the Hermite formula for ((s,a) [25, p. 271] we deduce

(7) {%C(S,a)} =log'(a) - %log(2ﬂ»’) or I'(a) = Imed (0.0),
s=0

where ((s,a) = Y 7~ (a+ k)% a > 0 is the generalized (or Hurwitz)
zeta function which is analytic for Re(s) > 1. It should be remarked
in passing [25, pp. 265-280] that ((s,a) can be continued analytically
to the whole s-plane except a simple pole at s = 1 with its residue 1.
C(s,1) =3 pe, k™* = ((s) is the Riemann zeta function.

The double Hurwitz zeta function (,(s,a) is defined by

oG

(8) Gls,a)= D (a+ky+ky)

ki,ky=0

which is analytic for Re(s) > 2 by the Eisenstein’s theorem [13, p. 99].
Furthermore (3(s,a) can be continued analytically to the whole s-plane
except simple poles at s = 1, 2 by the contour integral representation

[9]:

(1 —s )
© Gl = =5 [ L

where the contour C' is the same as in [25, p. 245 .
We can reduce (2(s,a) to {(s,a) [10]:

(10) CZ(sva):C(s_lva)+(1_a)C(5va)-

291



Junesang Choi

From ({24, p. 462], Eq. (A.11)) we have

1
11 log A = — — /(=
(11) ogA =5~

Now we can obtain a relationship between I';(a and (4(0, a) similar
to the formula (7):

(12) Ty(a) = e 17 A(27)2 "3%G(0

where (}(s,a) = %(g(s,a) and A is the Kinkelin's constant in (3).

Indeed, let f(a) be the right side of (12). It is not difficult to show
that f(a) satisfies the criteria of Theorem: It follows from (10) that
(4(0,1) = ¢'(=1). Considering (11) we have e2(®1) = A=1ets. There-
fore we have f(1) = 1.

It can be easily verified that
(13) (s )—gsm+~-+§:m+n L m=1,2,...

Letting m =1 in this formula (13)7 we find that ((s,a) = {(s,1 +a) +
a~*. Then considering (10) we see that f(a+1)"! = T'(a)f(a)"".

We have for a > 0

d* . d® d > 2

7.3 g fa) ——*'d—(;ggfz(sﬁa) = Z TR YL > 0.

9=0 ky,ko=0

Also by the analytic continuation of (2(s,a) we see that f(a)™! €
C*(0, 00). Therefore, by Theorem, this completes the proof of (12).

Finally we will show the duplication formula (6). Indeed, we observe
that

Cals,a) + 2(2 (3-,0 + %) + Co(s,a+1)

=20 Y (2a+2k +2k) 0 +2 Y (204 1+ 2k + 2ky) "
k],k2=0 kl,k2:0

+ ) (2a+2+2k + 2k2)'”}

k1 ,kz:U
= 28(2(57 2(1)
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A duplication formula for the double Gamma function Ty
Differentiating both sides of the formula just obtained with respect

to s and letting s = 0 in the resulting equation, and taking exponentials
on both sides of the last resulting equation, we obtain

2
exp (¢5(0, a)) [exp ¢ ((),a + %)] exp ((5(0,a + 1))

= 240929 exp ((4(0, 2a)) .

(14)

Recall the formula (c¢f. [2, p. 264], Eq. (17)): For every integer
m > 0,

Bm+1(a)_

(1’5) C(“mva}: - m+ 1

where Bp,41(a) are Bernoulli polynomials.
Now the desired duplication formula (6) follows immediately from

formulas (12), (14) and (15).
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