• Title/Summary/Keyword: p-Banach space

Search Result 97, Processing Time 0.023 seconds

CONVERGENCE TO COMMON FIXED POINTS FOR A FINITE FAMILY OF GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Saluja, G.S.
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2013
  • The purpose of this paper is to study an implicit iteration process with errors and establish weak and strong convergence theorems to converge to common fixed points for a finite family of generalized asymptotically quasi-nonexpansive mappings in the framework of uniformly convex Banach spaces. Our results extend, improve and generalize some known results from the existing literature.

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATES FOR ASYMPTOTICALLY NONEXPANSIVE MAPS WITH NEW CONTROL CONDITIONS

  • Eldred, A. Anthony;Mary, P. Julia
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1271-1284
    • /
    • 2018
  • In this paper, we establish strong convergence of the modified Ishikawa iterates of an asymptotically non expansive self-mapping of a nonempty closed bounded and convex subset of a uniformly convex Banach space under a variety of new control conditions.

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

STRONG CONVERGENCE THEOREMS OF COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Wang, Ziming;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.783-796
    • /
    • 2010
  • We introduce a new iterative algorithm for equilibrium and fixed point problems of three hemi-relatively nonexpansive mappings by the CQ hybrid method in Banach spaces, Our results improve and extend the corresponding results announced by Xiaolong Qin, Yeol Je Cho, Shin Min Kang [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, Journal of Computational and Applied Mathematics 225 (2009) 20-30], P. Kumam, K. Wattanawitoon [P. Kumam, K. Wattanawitoon, Convergence theorems of a hybrid algorithm for equilibrium problems, Nonlinear Analysis: Hybrid Systems (2009), doi:10.1016/j.nahs.2009.02.006], W. Takahashi, K. Zembayashi [W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008) doi:10.1155/2008/528476] and others therein.

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.

A WEAK COMMON FIXED POINT THEOREM IN NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.573-581
    • /
    • 1997
  • In this paper we prove a weak common fixed point theo-rem in a normed almost linear space which is different from the result of S. P. Singh and B.A. Meade [9]. However for a Banach X our theorem is equal to the result of S. P. Singh and B. A. Meade.

ON THE STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Lee, Sang-Baek;Han, Mi Hyun;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.171-182
    • /
    • 2012
  • In this paper, for any fixed integer $n\;>\;m\;{\geq}\;1$, we investigate the generalized Hyers-Ulam stability of the following quadratic functional equation $f(nx+my)\;+\;f(nx-my)\;=\;mn[f(x+y)\;+\;f(x-y)]\;+\;2(n-m)[nf(x)\;-\;mf(y)]$ in ${p}$-Banach spaces, where $0\;<\;p\;{\leq}\;1$. And we prove the same stability of the above functional equation in 2-Banach spaces.

Fixed points of a certain class of mappings in uniformly convex banach spaces

  • Thakur, Balwant-Singh;Dep
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.385-394
    • /
    • 1997
  • In this paper, we prove in p-uniforlmy convex space a fixed point theorem for a class of mappings T satsfying: for each x, y in the domain and for n = 1, 2, 3, $\cdots$, $$ \left\$\mid$ T^n x - T^n y \right\$\mid$ \leq a \cdot \left\$\mid$ x - y \right\$\mid$ + b(\left\$\mid$ x - T^n x \right\$\mid$ + \left\$\mid$ y - T^n y \right\$\mid$) + c(\left\$\mid$ c - T^n y \right\$\mid$ + \left\$\mid$ y - T^n x \right\$\mid$, $$ where a, b, c are nonnegative constants satisfying certain conditions. Further we establish some fixed point theorems for these mappings in a Hilbert space, in $L^p$ spaces, in Hardy spaces $H^p$ and in Sobolev spaces $H^{p,k}$ for 1 < p < $\infty$ and k $\leq$ 0. As a consequence of our main result, we also the results of Goebel and Kirk [7], Lim [8], Lifshitz [12], Xu [20] and others.

  • PDF

STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

  • Govindan, Vediyappan;Pinelas, Sandra;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form $$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$ and $$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$ (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.