• Title/Summary/Keyword: p-38 mitogen-activated protein kinase

Search Result 399, Processing Time 0.022 seconds

Inhibitory effect of Fagopyrum esculentum on degranulation and production of cytokine in RBL-2H3 cells (교맥의 RBL-2H3 비만세포 탈과립과 cytokine 생산 억제 효과)

  • Kang, Kyung-Hwa;Lee, Seung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • Objectives : Fagopyrum esculentum(FE) has been used for removal of inflammation of internal organs and treatment of sore and ulcer by heat toxin in Korean herbal medicines. In this study, To investigated the protective effect of FE on allergic response, we determined whether FE inhibits allergic response. Methods : The effect of FE was analyzed by ELISA, RT-PCR and Western blot in RBL-2H3 cells. We investigated cell viability, ${\beta}$-hexosaminidase, as a marker of degranulation, cytokne, and intracellular ROS and MAPK and NF-${\kappa}B$ signaling. Results : We found that FE suppressed ${\beta}$-hexosaminidase release, the production of IL-4 and TNF-${\alpha}$ and intracellular ROS level in RBL-2H3 by the anti-DNP IgE plus DNP-HSA stimulation. FE also significantly inhibited cytokine mRNA expressions, such as IL-$1{\beta}$, IL-2, IL-3, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ and GM-CSF in RBL-2H3. In addition, PF suppressed the phospholyation of ERK1/2, JNK1/2, p38 and $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ signal transduction pathway. Conclusions : Our results indicate that FE protects against allergic response and exerts an anti-inflammatory effect through the inhibition of degranulation and production of cytokines and ROS via the suppression MAPK and NF-${\kappa}B$ of signal transduction. Abbrevations : FE, Fagopyrum esculentum; RBL-2H3, rat basophilic leukemia cell line; ROS, reactive oxygen species; MAPK, Mitogen-activated protein kinase; $NF{\kappa}B$, nuclear factor ${\kappa}B$; $TNF{\alpha}$, Tumor necrosis factor alpha; GM-CSF, Granulocyte macrophage colony-stimulating factor; ERK, extracellular-signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; p38, p38 MAP kinase; $I{\kappa}B{\alpha}$, inhibitory-kappa B alpha.

Anti-inflammatory effect of Seungmagalgeun-tang extract in human mast cells (Human mast cell에서 승마갈근탕(升麻葛根湯)의 항염증 효과에 대한 연구)

  • Keum, Joon-Ho;Seo, Yun-Soo;Kang, Ok-Hwa;Choi, Jang-Gi;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.7-11
    • /
    • 2013
  • Objectives : Seungmagalgeun-tang (SMGGT) is traditional medicine widely used for inflammatory disease and flu. But SMGGT exhibits potent anti-inflammatory activity with an unknown mechanism. To elucidate the molecular mechanisms of SMGGT water extract on pharmacological and biochemical actions in inflammation, we examined the effect of SMGGT on pro-inflammatory mediators in Phorbol-12-myristate-13-acetate (PMA)+A23187-stimulated mast cells. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to measure the activation of MAPKs. Cells were treated with SMGGT 1 h prior to the addition of 50 nM of PMA and $1{\mu}M$ of A23187. Cell viability was measured by MTS assay. The investigation focused on whether SMGGT inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and mitogen-activated protein kinases (MAPKs) in PMA+A23187-stimulated mast cells. Results : SMGGT has no cytotoxicity at examined concentration (100, 250, and $500{\mu}g/ml$). Also, gene expression of IL-6 and IL-8 in HMC-1 cells stimulated by PMA+A23187 was down regulated by SMGGT. Furthermore, SMGGT suppressed the PMA+A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal Kinase(JNK). But, SMGGT could not regulate phosphorylation of p38 MAPK. Conclusions : These results suggest that SMGGT has inhibitory effects on PMA+A23187-induced IL-6 and IL-8 production. These inhibitory effects occur through blockades on the phosphorylation of ERK and JNK.

Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii

  • Kim Ji-Young;Ahn Myoung-Hee;Song Hyun-Ouk;Choi Jong-Hak;Ryu Jae-Sook;Min Duk-Young;Cho Myung-Hwan
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.3
    • /
    • pp.197-207
    • /
    • 2006
  • This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and $MIP-1\alpha$, and enzyme, COX-2/prostaglandin $E_2(PGE_2)$ in infected cells via western blot, $[^3H]-uracil$ incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. $MIP-1\alpha$ mRNA was increased in macrophages at 18 hr PI. MCP-1 and $MIP-1\alpha$ were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. $PGE_2$ from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, $MIP-1\alpha$, COX-2 and $PGE_2$ were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Anti-Inflammatory Effect of Aqueous Extract of Scolopendrae Corpus in RAW 264.7 Cells (마우스 대식세포주인 RAW 264.7 세포에서 오공(蜈蚣)의 항염증 효과)

  • Jo, Il-Joo;Choi, Mee-Ok;Park, Min-Cheol;Song, Ho-Joon;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Scolopendrae Corpus (SC) on lipopolysaccharide (LPS)-induced inflammatory response. Methods : To evaluate the anti-inflammatory effects of SC, we examined the inflammatory mediators such as nitric oxide (NO) and pro-inflammatory cytokines (TNF-a, inteleukin (IL)-$1{\beta}$ and IL-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and inhibitory kappa B a ($I{\kappa}$-Ba) using western blot. Furthermore, we also investigated the effect of SC on LPS-induced endotoxin shock. Results : Extract from SC itself had not any cytotoxic effect in RAW 264.7 cells. Aqueous extract from SC inhibited LPS-induced NO production and iNOS expression. SC pre-treatment also inhibited IL-$1{\beta}$, IL-6 production in RAW 264.7 cells. To investigate inhibitory effects of SC on inflammatory mediators, activation of MAPKs was examined. SC inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK) and also the degradation of $I{\kappa}$-$B{\alpha}$ in RAW 264.7 cells stimulated with LPS. Furthermore, SC administration reduced LPS-induced endotoxin shock. Conclusion : SC down-regulated LPS-induced production of inflammatory mediators through inhibition of activation of p38, JNK and degradation of $I{\kappa}$-$B{\alpha}$. Taken together, our results suggest that SC may be a beneficial drug against inflammatory diseases such as sepsis.

Synergistic Induction of iNOS by IFN-${\gamma}$ and Glycoprotein Isolated from Dioscorea batatas

  • Pham, Thi Thu Huong;Lee, Min Young;Lee, Kun Yeong;Chang, In Youp;Lee, Seog Ki;Yoon, Sang Pil;Lee, Dong-Cheol;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.431-436
    • /
    • 2012
  • Dioscorea species continue to be used in traditional Chinese medicine, and represent a major source of steroid precursors for conventional medicine. In the previous study, We isolated glycoprotein (GDB) from Dioscorea batatas, characterized, and demonstrated immunostimulating activity in C57BL/6 mice. The aim of this study was to investigate the mechanism whereby GDB activates macrophages. Macrophages activation by GDB was investigated by analyzing the effects of GDB on nitric oxide (NO) production, iNOS expression, mitogen activated protein kinase (MAPK) phosphorylation, and transcription factor activation. In the presence of IFN-${\gamma}$, GDB strongly stimulated macrophages to express iNOS and produce NO. Furthermore, the activation of p38 was synergistically induced by GDB plus IFN-${\gamma}$, but SB203580 (a p38 inhibitor) inhibited GDB plus IFN-${\gamma}$-induced p38 activation. This study indicates that GDB is an important activator of macrophages. Furthermore, due to the critical role that macrophage activation plays in innate immune response, the activation effects of GDB on macrophages suggest that GDB may be a useful immunopotentiating agent.

Fermentation enhances the antioxidant and anti-inflammatory effects of Bat Faeces (Ye Ming Sha) via the ERK, p38 MAPK and NF-κB signaling pathways in RAW 264.7 cells

  • Lee, Han-Saem;Chon, So-Hyun;Kim, Min-A;Park, Jeong-Eun;Lim, Yu-Mi;Kim, Eun-Jeong;Son, Eun-Kyung;Kim, Sang-Jun;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.57-66
    • /
    • 2019
  • The ethyl acetate fraction of Bat Faeces (Ye Ming Sha: natural products used in Chinese Medicine) after fermentation (EFBF-AF) showed enhanced anti-oxidative effects in 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt assays. Fermentation of the Bat Faeces by using the crude enzyme extract from Aspergillus kawachii, significantly increased the anti-inflammatory effects. Fermented Bat Faeces markedly inhibited nitric oxide production, inducible nitric oxide synthase, and cyclooxygenase-2 expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The EFBF-AF reduced the nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) via $IKK{\alpha}$ and $I{\kappa}B{\alpha}$ phosphorylation, and decreased the phosphorylated the extracellular signal-regulated kinases (ERK) and p38 expression in LPS-treated RAW 264.7 macrophages. In addition, the EFBF-AF suppressed the expression of pro-inflammatory genes, such as interleukin-$1{\beta}$, interleukin-6, and tumor necrosis $factor-{\alpha}$. These results suggest that fermented Bat Faeces may suppress pro-inflammatory responses in LPS-stimulated RAW 264.7 macrophages cells via ERK, p38 mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin

  • Hae Ran Lee;Seong-Min Hong;Kyohee Cho;Seon Hyeok Kim;Eunji Ko;Eunyoo Lee;Hyun Jin Kim;Se Yeong Jeon;Seon Gil Do;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.249-260
    • /
    • 2024
  • New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.

PEP-1-FK506BP12 inhibits matrix metalloproteinase expression in human articular chondrocytes and in a mouse carrageenan-induced arthritis model

  • Hwang, Hyun Sook;Park, In Young;Kim, Dae Won;Choi, Soo Young;Jung, Young Ok;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.407-412
    • /
    • 2015
  • The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]