Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2 |
Li, Tao
(Department of Anesthesiology, China-Japan Union Hospital, Jilin University)
Wan, Yingchun (Department of Endocrinology, China-Japan Union Hospital, Jilin University) Sun, Lijuan (Department of Endocrinology, China-Japan Union Hospital, Jilin University) Tao, Shoujun (Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine) Chen, Peng (Department of Anesthesiology, China-Japan Union Hospital, Jilin University) Liu, Caihua (Department of Anaesthesiology, The Central Hospital of Wuhan Affiliated with Tongji Medical College of Huazhong University of Science and Technology) Wang, Ke (Department of Gynaecology and Obstetrics, China-Japan Union Hospital, Jilin University) Zhou, Changyu (Department of Gastroenterology, China-Japan Union Hospital, Jilin University) Zhao, Guoqing (Department of Anesthesiology, China-Japan Union Hospital, Jilin University) |
1 | Lombardi, M. S., Kavelaars, A. and Heijnen, C. J. (2002) Role and modulation of G protein-coupled receptor signaling in inflammatory processes. Crit. Rev. Immunol. 22, 141-163. |
2 | Lombardi, M. S., van den Tweel, E., Kavelaars, A., Groenendaal, F., van Bel, F. and Heijnen, C. J. (2004) Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain. Stroke 35, 981-986. DOI |
3 | Lucas, E., Cruces-Sande, M., Briones, A. M., Salaices, M., Mayor, F., Jr., Murga, C. and Vila-Bedmar, R. (2015) Molecular physiopathology of obesity-related diseases: multi-organ integration by GRK2. Arch. Physiol. Biochem. 121, 163-177. DOI |
4 | Moon, H. G., Yang, J., Zheng, Y. and Jin, Y. (2014) miR-15a/16 regulates macrophage phagocytosis after bacterial infection. J. Immunol. 193, 4558-4567. DOI |
5 | Nijboer, C. H., Heijnen, C. J., Willemen, H. L., Groenendaal, F., Dorn, G. W., 2nd, van Bel, F. and Kavelaars, A. (2010) Cell-specific roles of GRK2 in onset and severity of hypoxic-ischemic brain damage in neonatal mice. Brain Behav. Immun. 24, 420-426. DOI |
6 | O'Connor, A. B. and Dworkin, R. H. (2009) Treatment of neuropathic pain: an overview of recent guidelines. Am. J. Med. 122, S22-32. DOI |
7 | Penela, P., Murga, C., Ribas, C., Salcedo, A., Jurado-Pueyo, M., Rivas, V., Aymerich, I. and Mayor, F., Jr. (2008) G protein-coupled receptor kinase 2 (GRK2) in migration and inflammation. Arch. Physiol. Biochem. 114, 195-200. DOI |
8 | Peregrin, S., Jurado-Pueyo, M., Campos, P. M., Sanz-Moreno, V., Ruiz-Gomez, A., Crespo, P., Mayor, F., Jr. and Murga, C. (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Curr. Biol. 16, 2042-2047. DOI |
9 | Sakai, A. and Suzuki, H. (2014) Emerging roles of microRNAs in chronic pain. Neurochem. Int. 77, 58-67. DOI |
10 | Spinetti, G., Fortunato, O., Caporali, A., Shantikumar, S., Marchetti, M., Meloni, M., Descamps, B., Floris, I., Sangalli, E., Vono, R., Faglia, E., Specchia, C., Pintus, G., Madeddu, P. and Emanueli, C. (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ. Res. 112, 335-346. DOI |
11 | Su, S., Shao, J., Zhao, Q., Ren, X., Cai, W., Li, L., Bai, Q., Chen, X., Xu, B., Wang, J., Cao, J. and Zang, W. (2017) MiR-30b attenuates neuropathic pain by regulating voltage-gated sodium channel Nav1.3 in rats. Front. Mol. Neurosci. 10, 126. DOI |
12 | Suo, Z., Wu, M., Citron, B. A., Wong, G. T. and Festoff, B. W. (2004) Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation. J. Neurosci. 24, 3444-3452. DOI |
13 | Svensson, C. I., Schafers, M., Jones, T. L., Powell, H. and Sorkin, L. S. (2005) Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett. 379, 209-213. DOI |
14 | Willemen, H. L., Eijkelkamp, N., Wang, H., Dantzer, R., Dorn, G. W., 2nd, Kelley, K. W., Heijnen, C. J. and Kavelaars, A. (2010) Microglial/macrophage GRK2 determines duration of peripheral IL-1betainduced hyperalgesia: contribution of spinal cord CX3CR1 , p38 and IL-1 signaling. Pain 150, 550-560. DOI |
15 | Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. and Inoue, K. (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89-95. DOI |
16 | van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H. and Torrance, N. (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155, 654-662. DOI |
17 | Vroon, A., Heijnen, C. J. and Kavelaars, A. (2006) GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 80, 1214-1221. DOI |
18 | Ahmed, M. R., Bychkov, E., Gurevich, V. V., Benovic, J. L. and Gurevich, E. V. (2008) Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J. Neurochem. 104, 1622-1636. DOI |
19 | Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-355. DOI |
20 | Wang, H., Heijnen, C. J., Eijkelkamp, N., Garza Carbajal, A., Schedlowski, M., Kelley, K. W., Dantzer, R. and Kavelaars, A. (2011) GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain 152, 1649-1658. DOI |
21 | Willemen, H. L., Huo, X. J., Mao-Ying, Q. L., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J. Neuroinflammation 9, 143. DOI |
22 | Woodall, M. C., Woodall, B. P., Gao, E., Yuan, A. and Koch, W. J. (2016) Cardiac fibroblast GRK2 deletion enhances contractility and remodeling following ischemia/reperfusion injury. Circ. Res. 119, 1116-1127. DOI |
23 | Yue, J. and Tigyi, G. (2010) Conservation of miR-15a/16-1 and miR-15b/16-2 clusters. Mamm. Genome 21, 88-94. DOI |
24 | Yang, D., Yang, Q., Wei, X., Liu, Y., Ma, D., Li, J., Wan, Y. and Luo, Y. (2017a) The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J. Pain Res. 10, 2395-2403. DOI |
25 | Yang, X., Tang, X., Sun, P., Shi, Y., Liu, K., Hassan, S. H., Stetler, R. A., Chen, J. and Yin, K. J. (2017b) MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke 48, 1941-1947. DOI |
26 | Ye, E. A., Liu, L., Jiang, Y., Jan, J., Gaddipati, S., Suvas, S. and Steinle, J. J. (2016) miR-15a/16 reduces retinal leukostasis through decreased pro-inflammatory signaling. J. Neuroinflammation 13, 305. DOI |
27 | Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C., Zanesi, N., Garzon, R., Aqeilan, R. I., Alder, H., Volinia, S., Rassenti, L., Liu, X., Liu, C. G., Kipps, T. J., Negrini, M. and Croce, C. M. (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl. Acad. Sci. U.S.A. 105, 5166-5171. DOI |
28 | Andersen, H. H., Duroux, M. and Gazerani, P. (2014) MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol. Dis. 71, 159-168. DOI |
29 | Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. DOI |
30 | Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. DOI |
31 | Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. and Yaksh, T. L. (1994) Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55-63. DOI |
32 | Chen, W., Guo, S. and Wang, S. (2016) MicroRNA-16 alleviates inflammatory pain by targeting Ras-related protein 23 (RAB23) and inhibiting p38 MAPK activation. Med. Sci. Monit. 22, 3894-3901. DOI |
33 | Denk, F. and McMahon, S. B. (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73, 435-444. DOI |
34 | Eijkelkamp, N., Heijnen, C. J., Willemen, H. L., Deumens, R., Joosten, E. A., Kleibeuker, W., den Hartog, I. J., van Velthoven, C. T., Nijboer, C., Nassar, M. A., Dorn, G. W., 2nd, Wood, J. N. and Kavelaars, A. (2010) GRK2: a novel cell-specific regulator of severity and duration of inflammatory pain. J. Neurosci. 30, 2138-2149. DOI |
35 | Kavelaars, A., Eijkelkamp, N., Willemen, H. L., Wang, H., Carbajal, A. G. and Heijnen, C. J. (2011) Microglial GRK2: a novel regulator of transition from acute to chronic pain. Brain Behav. Immun. 25, 1055-1060. DOI |
36 | Zhang, F., Xiang, S., Cao, Y., Li, M., Ma, Q., Liang, H., Li, H., Ye, Y., Zhang, Y., Jiang, L., Hu, Y., Zhou, J., Wang, X., Nie, L., Liang, X., Gong, W. and Liu, Y. (2017) EIF3D promotes gallbladder cancer development by stabilizing GRK2 kinase and activating PI3K-AKT signaling pathway. Cell Death Dis. 8, e2868. DOI |
37 | Haanpaa, M., Attal, N., Backonja, M., Baron, R., Bennett, M., Bouhassira, D., Cruccu, G., Hansson, P., Haythornthwaite, J. A., Iannetti, G. D., Jensen, T. S., Kauppila, T., Nurmikko, T. J., Rice, A. S., Rowbotham, M., Serra, J., Sommer, C., Smith, B. H. and Treede, R. D. (2011) NeuPSIG guidelines on neuropathic pain assessment. Pain 152, 14-27. DOI |
38 | Hargreaves, K., Dubner, R., Brown, F., Flores, C. and Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77-88. DOI |
39 | Ji, L. J., Shi, J., Lu, J. M. and Huang, Q. M. (2018) MiR-150 alleviates neuropathic pain via inhibiting toll-like receptor 5. J. Cell. Biochem. 119, 1017-1026. DOI |
40 | Jiangpan, P., Qingsheng, M., Zhiwen, Y. and Tao, Z. (2016) Emerging role of microRNA in neuropathic pain. Curr. Drug Metab. 17, 336-344. DOI |
41 | Kleibeuker, W., Ledeboer, A., Eijkelkamp, N., Watkins, L. R., Maier, S. F., Zijlstra, J., Heijnen, C. J. and Kavelaars, A. (2007) A role for G protein-coupled receptor kinase 2 in mechanical allodynia. Eur. J. Neurosci. 25, 1696-1704. DOI |
42 | Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610. DOI |
![]() |