• Title/Summary/Keyword: p a-SiC:H

Search Result 614, Processing Time 0.031 seconds

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Process and Performance Analysis of a-Si:H/c-Si Hetero-junction Solar Sells Prepared by Low Temperature Processes (저온 공정에 의한 a-Si:H/c-Si 이종접합 태양전지 제조 및 동작특성 분석)

  • Lim, Chung-Hyun;Lee, Jeong-Chul;Jeon, Sang-Won;Kim, Sang-Kyun;Kim, Seok-Ki;Kim, Dong-Seop;Yang-Sumi;Kang-Hee-Bok;Lee, Bo-young;Song-Jinsoo;Yoon-Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-200
    • /
    • 2005
  • In this work, we investigated simple Aㅣ/TCO/a-Si:H(n)/c-Si(p)/Al hetero-junction solar cells prepared by low temperature processes, unlike conventional thermal diffused c-Si solar cells. a-Si:H/c-Si hetero-junction solar cells are processed by low temperature deposition of n-type hydrogenated amorphous silicon (a-Si:H) films by plasma-enhanced chemical vapor deposition on textured and flat p-type silicon substrate. A detailed investigation was carried out to acquire optimization and compatibility of amorphous layer, TCO (ZnO:Al) layer depositions by changing the plasma process parameters. As front TCO and back contact, ZnO:Al and AI were deposited by rf magnetron sputtering and e-beam evaporation, respectively. The photovoltaic conversion efficiency under AMI.5 and the quantum efficiency on $1cm^2$ sample have been reported. An efficiency of $12.5\%$ is achieved on hetero-structure solar cells based on p-type crystalline silicon.

  • PDF

Properties of Hydration and Strength of Sol-gol Derived Fine Particle in the System $CaO-P_2O_5-SiO_2$ (졸겔법에 의한 $CaO-P_2O_5-SiO_2$계 미세분말의 수화 및 강도특성)

  • 이형우;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1231-1239
    • /
    • 1994
  • In this study, gel powder which had relatively high hydration reactivity in CaO and P2O5 rich composition of CaO-P2O5-SiO2-H2O system was prepared by sol-gel process and its hydrated specimen was manufactured. The it was investigated to appropriate calcination temperature in sol-gel process which hydrated specimen of gel powder have proven to strength and the effect of factors influenced strength in hydration process. The major product of before and after hydration reaction was hydroxyapatite, and crystalline phase of C-S-H was already formed during gelation process. After hydration reaction of pressed specimen, crystalline phase of C-S-P-H was formed. It was hydrated product of silicocarnotite (5CaO.P2O5.SiO2). Gel phases of C-S-H and C-S-P-H occured as a result of partial substitution of amorphous silica by P2O5 was formed. The strength of hydrated hardened body is developed by strong bonding and bridging between the gel phases of C-S-H or C-S-P-H and the crystalline products such as hydroxyapatite, Ca(OH)2 C-S-H and C-S-P-H. In addition, the ultrafine gel powder have an great effect on increase of hydration reaction.

  • PDF

A optimum studies of TCO/p-layer for high Efficiency in Amorphous Silicon Solar cell (비정질 실리콘 태양전지 고효율화를 위한 전면투명전도막/p 최적연구)

  • Lee, Ji-Eun;Lee, Jeong-Chul;Oh, Byung-Seng;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.275-277
    • /
    • 2007
  • 유리를 기판으로 하는 superstrate pin 비정질 태양전지에서 전면투명전도막(TCO)과 p-layer의 계면이 태양전지의 효율을 내는데 가장 큰 기여를 한다. 전면투명전도막(TCO)으로 현재 일반적으로 사용되는 ZnO:Al는 $SnO_2:F$ 보다 전기,광학적으로 우수하고, 안개율(Haze)높으며, 수소 플라즈마에서의 안정성이 높은 특정을 갖고 있다. 그래서 박막 태양전지 특성향상에 매우 유리하나, 태양전지로 제조했을 때, $SnO_2:F$보다 충진율(Fill factor:F.F)과 V_{\infty}$ 가 감소한다는 단점을 가지고 있다. 본 실험실에서는 $SnO_2:F$의 F.F가 72%이 나온 반면 ZnO:Al의 F.F은 68%에 그쳤다. 이들 원인을 분석하기 위해 TCO/p-layer의 전기적 특성을 알아 본 결과, $SnO_2:F$보다 ZnO:Al의 직렬저항이 높게 측정되었다. 이러한 결과를 바탕으로 p-layer 에 R={$H_2/SiH_4$}=25로 변화, p ${\mu$}c$-Si:H/p a-SiC:H 로 p-layer 이중 증착, p-layer의 boron doping 농도를 증가시키는 실험을 하였다. 직렬저항이 가장 낮았던 p ${\mu$}c$-Si:H/p a-SiC:H 로 p-layer 이중 증착에서 Voc는 0.95V F.F는 70% 이상이 나왔다. 이들 각 p층의 $E_a$(Activation Energy)를 구해본 결과, ${\mu$}c$-Si:H의 Ea 가 가장 낮은 것을 관찰 할 수 있었다.

  • PDF

The characteristic analysis of TCO/p-layer interface in Amorphous Silicon Solar cell (비정질 실리콘 태양전지에서 투명전도막/p층 계면 특성분석)

  • Lee, Ji-Eun;Lee, Jeong-Chul;O, Byung-Sung;Song, Jin-Soo;Yoon, Kyung-Hoon
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.63-68
    • /
    • 2007
  • 유리를 기판으로 하는 superstrate pin 비정질 실리콘 태양전진에서 전면 투명전도막(TCO)과 p-층의 계면은 태양전지 변환효율에 큰 영향을 미친다. 면투명전도막(TCO)으로 현재 일반적으로 사용되는 ZnO:Al는 $SnO_2:F$보다 전기, 광학적으로 우수하고, 안개율 (Haze)높으며, 수소 플라즈마에서 안정성이 높은 특징을 갖고 있다. 그래서 박막 태양전지의 특성향상에 매우 유리하나, 태양전지로 제조했을 때, $SnO_2$보다 충진율(Fill Factor:F.F)과 $V_{oc}$가 감소한다는 단점을 가지고 있다. 본 실험실에서는 $SnO_2:F$dml F.F.가 72%이 나온 반면 ZnO:Al의 F.F은 68%에 그쳤다. 이들 원인을 분석하기 위해 TCO/p-layer의 전기적 특성을 알아 본 결과, $SnO_2:F$보다 ZnO:Al의 직렬저항이 높게 측정되었다. 이러한 결과를 바탕으로 p-layer에 $R=(H_2/SiH_4)=25$로 변화, p ${\mu}c$-Si:H/p a-SiC:H로 p-layer 이중 증착, p-layer의 boron doping 농도를 증가시키는 실험을 하였다. 직렬저항이 가장 낮았던 p ${\mu}c$-Si:H/p a-SiC:H 인 p-layer 이중 증착에서 $V_{oc}$는 0.95V F.F는 70%이상이 나왔다. 이들 각 p층의 $E_a$(Activiation Energy)를 구해본 결과, ${\mu}c$-Si:H의 Ea 가 가장 낮은 것을 관찰 할 수 있었다.

  • PDF

Roles of i-SiC Buffer Layer in Amorphous p-SiC/i-SiC/i-Si/n-Si Thin Film Solar Cells (비정질 p-SiC/i-SiC/i-Si/n-Si 박막 태양전지에서 i-SiC 완충층의 역할)

  • Kim, Hyun-Chul;Shin, Hyuck-Jae;Lee, Jae-Shin
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1155-1159
    • /
    • 1999
  • Thin film solar cells on a glass/$SnO_2$ substrate with p-SiC/i-Si/n-Si heterojunction structures were fabricated using a plasma-enhanced chemical-vapor deposition system. The photovoltaic properties of the solar cells were examined with varying the gas phase composition, x=$CH_4/\;(SiH_4+CH_4)$, during the deposition of the p-SiC layer. In the range of x=0~0.4, the efficiency of solar cell increased because of the increased band gap of the p-SiC window layer. Further increase in the gas phase composition, however, led to a decrease in the cell efficiency probably due to in the increased composition mismatch at the p-SiC/i-Si layers. As a result, the efficiency of a glass/$SnO_2$/p-SiC/i-SiC/i-Si/n-Si/Ag thin film solar cell with $1cm^2$ area was 8.6% ($V_{oc}$=0.85V, $J_{sc}$=16.42mA/$cm^2$, FF=0.615) under 100mW/$cm^2$ light intensity.

  • PDF

Application of 3-dimensional phase-diagram using FactSage in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서 FactSage를 이용한 압력-조성-온도 3차원 상평형도의 응용)

  • Kim, Jun-Woo;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure(P), temperature(T) and gas composition(C) as variables in $C_3H_8-SiCl_4-H_2$ system. During the calculation, the ratio of Cl/Si and C/Si is maintained to be 4 and 1, respectively, and H/Si ratio is varied from 2.67 to 15,000. The P-T-C diagram showed very steep phase boundary between SiC+C and SiC region perpendicular to H/Si axis and also showed SiC+Si region with very large H/Si value of ~6700. The diagram can be applied not only to the prediction of the deposited phase composition but to compositional variation due to the temperature distribution in the reactor. The P-T-C diagram could provide the better understanding of chemical vapor deposition of silicon carbide.

Synthesis and Reactivity of the Pentacoordinate Organosilicon and -germanium Compounds Containing the C,P-Chelating ο-Carboranylphosphino Ligand [ο-C2B10H10PPh2-C,P](CabC,P

  • Lee, Tae-Gweon;Kim, Sang-Hoon;Kong, Myong-Seon;Kang, Sang-Ook;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.845-851
    • /
    • 2002
  • The synthesis of the intramolecular donor - stabilized silyl and germyl complexes of the type ($Cab^c.p) MMe_2X$ (2a:M=Si, X=Cl;2b;M= Ge, X=Cl;2e;M=Si,X=H) was achieved by the reaction of $LiCab^c,p$ (1) with $Me_2SiClX$ and $Me_2GeCl_2$ respectively. The intramolecular M←P interacion in 2a-2c is provided by $^1H$, $13^C.$, $31^P$ and $29^Si$ NMR spectroscopy. The salt elimination reactions of dichlorotetramethyldisilane and -digermane with 1 afforded the $bis(\sigma-carboranylphosphino)disilane$ and disgermane [$(Cab^C.P)MMe_2]_2(4a;M$ = Si;4b: M=Ge). The oxidative addition reaction of 4a-4b with $pd_2(dba)_3CHCl_3afforded$ the bis(silyl)-and bis(germyl)-palladium complexes. The chloro-bridged dipalladium complexes were obtained by the reaction of 2a-2b with $pd_2(dba)_3CHCl_3$ The crystal structures of 5a and 7b were determined by X-ray structural studies.

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells (Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석)

  • Jang, Jae-Hoon;Lim, Koeng-Su
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF