• Title/Summary/Keyword: ozone in Korea

Search Result 772, Processing Time 0.026 seconds

Change of SOD, POD Activity and Stomata Resistance for Ozone on Rice(Oryza sativa L.) (오존 처리에 의한 벼 품종간 SOD, POD 활성과 기공저항성의 변화)

  • Chung, Ill-Min;Kim, Kwang-Ho;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.160-165
    • /
    • 2000
  • This study was carried to select the tolerance in rice varieites for ozone treatment through comparing SOD, POD and stomata resistance. In SOD Acivity, Sangnambatbyeo showed the highest activity on 1 hr after ozone treatment and after 24 hr, SOD activity was decreased. SOD activity of Hangangchalbyeo was not different in observed all times after ozone treatment. In POD activity, Hangangchalbyeo, Sangnambatbyeo and Ilpumbyeo were similar to POD activity but Baeknabyeo was the lowest activity on 1 hr after ozone treatment. Also, all varieties represnted the highest activity (above 90 %) an 24 hr after ozone treatment. In stomata resistance, Sangnambatbyeo was decreased stomata resistance on 1 hr after ozone treatment. Hangangchalbyeo, Sangnambatbyeo and Baekna were decreased stomata resistiance on 24 hr after ozone treatment except Ilpumbyeo.

  • PDF

Effects of Coagulants and Ozone Concentration on the Livestock Manure Treatment Efficiency of AOF Process (AOF공정 중 응집제와 오존 농도가 가축분뇨 처리효율에 미치는 영향)

  • Jeong, Sung-Chol;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.311-315
    • /
    • 2016
  • The efficiency of manure treatment was investigated in terms of the pH, BOD, COD, SS, T-N and TP with a variation in the injection amount of PAC, polymer and ozone. The wastewater flow rate to the AOF is of $7.4m^3/hr$ with a reaction time of 30 minutes. The amount of PAC and polymer changed by 30, 35, 40 ml/min, and 30, 40, 50 ml/min, respectively. The amount of ozone injected varied from 110, 125, and $150kg-O_3/hr$. The optimum manure treatment performance was found for a PAC of 35 ml/min for the COD and SS, with polymer of 30 ml/min, and ozone injection of $150kg-O^3/hr$. A substantially optimum dose for each PAC, polymer, and ozone was also found to exist.

Cost Evaluation for the Decision of Advanced Treatment Processes (최적 고도정수처리공정 선정을 위한 경제성 평가)

  • Lee, Kyung-Hyuk;Shin, Heung-Sup;An, Hyo-Won;Chae, Sun-Ha;Lim, Jae-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.511-516
    • /
    • 2008
  • Since 1989, Advanced drinking water treatment processes began to build in Korea, especially the water treatment plants around the Nak-dong river stream due to sequential pollutant accidents. Moreover, Advanced drinking water treatment processes, ozone and GAC, are again to be built in water treatment plants around Han-river stream to control taste and odor, micro pollutants. However, there are still a lot of discussion to decide the processes to apply for advanced treatment. Thus there are still need to understand clearly on the cost evaluation of each advanced treatment processes. The cost evaluation was accomplished based on the data of six water treatment plants which are currently being either operating or constructing. Exceptionally, PAC(Powdered Activated Carbon) process was evaluated with cost estimation from construction company. The capital cost per unit volume of ozone process was significantly decreased as the treatment capacity increased. The capital cost was in the order of GAC, ozone and GAC. The operation cost decreased in the order of PAC, GAC and ozone. The total cost considering present value shows that ozone process covers 84% of ozone and GAC process for $30,000m^3/d$ capacity while it covers less than 35% for over 140 thousands $m^3/d$ capacity. Comparing GAC only, and ozone/GAC process, ozone/GAC process is more cost effective for high capacity water treatment plant.

Stability Review of Formulations Produced with Ozone Free Plasma (제형별 오존 free 플라즈마 안정도 검토)

  • You-Yeon Chun;Ha Hyeon Jo;Moonki Baek;Sun Ju Park;Sofia Brito;Bum-Ho Bin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.143-151
    • /
    • 2024
  • Ozone is a colorless, toxic gas that is produced when nitrogen oxides and hydrocarbons undergo a photochemical oxidation reaction in the sun's rays. Even at low concentrations, it affects the respiratory system, causing coughing and other harmful effects. It was confirmed that ozone was generated from nitrogen plasma among cosmetic raw materials, and it was found that the concentration of ozone decreased after 1 day. On the other hand, ozone was not detected in ozone-free plasma generated with argon gas. Therefore, we aimed to produce ozone-free cosmetics by utilizing ozone-free plasma. For efficient plasma processing, the non-sinking method was utilized to inject the plasma into layer separation mists, toners, and ampoules, and the stability was observed. It was found that the successful injection of plasma in the layer separation mist was higher than the other two formulations, but decreased sharply compared to the toner and ampoule. It was found that the ozone-free plasma used did not affect the stability of the layer separation mist, toner, and ampoule under low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃, 50 ℃) conditions. Therefore, this study suggests the importance of ozone-free plasma for cosmetic potential and stability of each formulation.

Ozone Generation Characteristics in Dielectric Barrier Discharge (유전체 장벽 방전내에서 오존발생 특성)

  • Lee, Hyeong-Ho;Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

Effect of Ozone Water to Reduce Pathogenic Microorganisms on Chopping Board (도마표면의 병원성미생물 제어를 위한 오존수 처리효과)

  • Park, In-Sook;Kim, Yong-Soo;Baek, Seung-Bum;Kim, Ae-Young;Choi, Sung-Hee;Lee, Young-Ja;Jeon, Dae-Hoon;Kim, Hyoung-Il;Ha, Sang-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.225-229
    • /
    • 2009
  • The efficacy of ozone water in reducing food-borne pathogenic bacteria on High Density Polyethylene (HDPE) and wooden chopping boards in food industry was investigated in this study. 1-5 log reductions of E. coli O157:H7, S. aureus, S. Typhimurium, and B. cereus were observed with increasing concentrations of ozone water. The immersion treatment evidenced superior capability to inactivate food-borne pathogens than washing treatment. The Gram-negative bacteria, such as E. coli O157:H7 and S. Typhimurium, evidenced lower resistance against ozone water than was seen with the gram-positive bacteria, which included S. aureus and B. cereus. The sterilizing effects of ozone water on HDPE chopping boards was superior to that on wooden boards. This result might be utilized to remove food-borne pathogens from food contact surfaces in the food industry.

Induced reactivation of T3 phage in ozone treated strains of Escherichia coli B (오존 처리된 E. coli B 에서의 T3 파아지의 재활성 유도)

  • LHerault Pierre
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.117-121
    • /
    • 1987
  • The ozone-induced reactivation factor for ozonated or UV-irradiated T3 phage was determined in defferent bacterial strains of Escherichia coli B resistant of sensitive to ozone. Our results suggest that ozone is a weak, if any at all, inducer of the Weigle reactivation, one of the SOS functions. This is in agreement with other studies which have suggested that thes agent is probably a weak inducer of the SOS functions.

  • PDF

On Characteristics of Surface Ozone Concentration and Important Meteorological Parameters in Pusan, Korea (부산 지역의 오존 농도 특징과 기상 인자에 관한 연구)

  • 전병일;김유근;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • We considered that characteristics of surface ozone continuous and important meteorological parameters from the data measured 7 air quality continuous monitoring stations during 2 years (1990, 1993) in pusan. The diurnal ozone variation showed a primary peak near 1500LST and a secondary peak of the DP(double peaked) pattern. The episode day was defined when an ozone peak higher than 60 ppb was observed at least one station. The frequency of episode day was 100 (298 hours, 69 days). The frequency of the episode day was higher at Meongryundong and Daeyeondong than other sites and highest in August under control of pacific subtropical high. The high temporatant meteorological parameters accompanying the high episode days. The favorable synoptic environment accompanying ozone episode was distributed to 7 different pattern. These pattern can be taken as a nesessary but not an absolute indicator for predicting the occerrence of an episode.

  • PDF

Relationship Between Ozone Concentrations and Affecting factors in Seosan City of Korea (충남 서산지역 대기 중의 오존농도와 그 영향인자와의 관련성)

  • Kim, Jun-Kyeom;Jeong, Yong-Jun;Cho, Young-Chae
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.78-88
    • /
    • 2003
  • This study was conducted to investigate the relation between ozone concentration and the affecting factors in Seosan City of Korea from Jan. 2002 to Dec. 2002. We analyzed the air pollutants such as NO$_2$, PM$_{10} $,SO$_2$, CO and the meteorological factors including solar radiation, air temperature, wind speed and relative humidity. The analytical data were taken statistics by SPSS method. The results were as follows: The seasonal average concentration of ozone were detected 35.0 ppb in Spring, 25.4 ppb in Summer, 23.5 ppb in Autumn and 21.4 ppb in Winter. So the difference of concentrations showed significantly in statistics. The hourly ozone concentration in a day was increased at 7-9 AM, peaked at 3-4 PM. The correlation coefficients was negative to ozone concentration and NO$_2$, SO$_2$, CO, relative humidity, but positive to solar radiation, air temperature, wind speed. With stepwise multiple regression analysis on the 8 factors such as NO$ _2$, PMSO$_{10}$,SO$_2$, CO, solar radiation, air temperature, wind speed and relative humidity, the seasonal primary factors were air temperature in spring, relative humidity in summer and solar radiation in autumn and winter. The above results suggest that ozone is the secondary pollutant by photochemical reaction as the concentration of ozone was increased with the raise of solar radiation.

Yearly Variation and Influencing Factors of Ozone Concentration in the Ambient Air of Seoul (서울시 대기중 오존오염도의 연도별 변화와 그 영향인자 분석: 광화문 지역을 중심으로)

  • Lee, Ki-Won;Kwon, Sook-Pyo;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.107-115
    • /
    • 1993
  • This study was carried out to find the characteristics of surface ozone concentration data obtained during 1988-1991 by the Korea Ministry of Environment. Seasonal data (spring, summer, autumn and winter) wre obtained in May, August, November and February respectively at Kwanghwamun in Seoul. The pollutants analyzed in this study are $SO_2, TSP, CO, NO, NO_2 and NO_2/NO$. Atmospheric factors such as solar radiation, wind speed, relative humidity, cloud amount and atmospheric temperature are also analyzed. The influence of pollutants and atmospheric factors that affect ozone concentration were analyzed by statistical method. The results are summarized as follows : 1. The ozone concentration varied seasonally. The maximum values were 23 ppb in spring, 33 ppb in summer, 16 ppb in autumn and 13 ppb in winter. So the seasonal ozone value was highest in Summer. 2. Te diurnal concentration of ozone was highest during 2-4 P. M. and was very low in the morning and evening. 3. The maximal correlation coefficients of each season between ozone concentration and the influencing pollutants or atmospheric factors asr as follows ; a. spring, r = 0.44(solar radiation) b. summer, r = -0.59(relative humidity) c. autumn, r = -0.55(relative humidity) d. winter, r = -0.58($NO_2$) 4. The major factor affecting the ozone concentration in spring was solar radiation, Relative humidity was the first affecting factor in summer, autumn and $NO_2$ concentration was dominant in winter.

  • PDF