• Title/Summary/Keyword: ozonated water

Search Result 46, Processing Time 0.03 seconds

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Effect of Washing Methods and Surface Sterilization on Quality of Fresh-cut Chicory (Clchorium intybus L. var. foliosum) (세정 및 표면살균에 따른 신선편이 치커리 제품의 품질 특성 변화)

  • Kwon, Ju-Yeon;Kim, Byeong-Sam;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • Effects of various surface sterilization and washing methods on sterilization of fresh chicory surface were evaluated. Fresh-cut chicory was washed with tap water for 1 min, 100 ppm chlorinated water, and 3 ppm ozonated water using mechanical washing machine for 3 min, packed with bi-axially oriented polypropylene (OPP 0.04 mm) film, and stored for 3 weeks at 4 and $10^{\circ}C$. Tap water washing resulted in approximately 1 log CFU/g reduction of microbial load, and ozonated water and chlorinated water treatments resulted in additional 2 log CFU/g reduction.

The Study on the Development of Ozone Water Diffusion Device by Ozonated Olive Oil Mix Ratio that will Increase (올리브 오일의 오존화 혼합비율을 높여주는 오존수 확산장치개발에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.688-693
    • /
    • 2014
  • This study is to increase the utilization of the ozonated water generator to make it easier to take advantage of the ozone water in the world today, there will be to develop a system that operates in one motion. Furthermore, olive oil and ozone is reacted with the wish to apply to the manufacturing technology. In the case of many existing products ozone generator driven mostly non-ozone system. In the case of ozone, but handwriting is implied general way pressure ozone gas leakage risks of suction force to the pump, it is the case of the challenge by using the injector, and limit the generation of ozone and ozone inhalation according to whether the water inlet leakage of existing products risk due to minimized. Despite the disadvantages of the injector system was found the effectiveness of the ozonated water production unit injector system used in this study to maintain the microbiological disinfection performance.

Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system - (습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 -)

  • Kim J.;Bae Y. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

Effect of Organic wax residues and particles removal by DIO3 (ozonated DI water) after Silicon Wafer batch Polishing Process (오존수를 이용한 실리콘 웨이퍼 연마 후 지용성 왁스 및 오염입자 제거의 영향)

  • Yi, Jae-Hwan;Lee, Seung-Ho;Kim, Tae-Gon;Park, Jin-Goo;Lee, Gun-Ho;Bae, So-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.558-559
    • /
    • 2007
  • A commercially de-waxer which kinds of solvent after was used to remove a thick organic wax film after polishing process and several steps of SC-1 cleanings were followed for the removal of organic wax residues and particles which requires long process time and high cost of ownership (COO). DIO3 was used to remove organic wax residues too achieve low COO. In this study, 0103 rinsing could use instead of 01 water rinsing. The process time and chemical consumption were reduced by using DIO3.

  • PDF

Microbial Quality and Safety of Fresh-Cut Broccoli with Different Sanitizers and Contact Times

  • Das, Basanta Kumar;Kim, Ji-Gang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • This study was conducted to investigate the effects of different sanitizers and contact times on storage quality and microbial growth in fresh-cut broccoli. Fresh broccoli samples were cut into small pieces, washed each for 90 s and 180 s in normal tap water (TW), $100\;{\mu}/l$ chlorinated water (CL, pH 7), electrolyzed water (EW, pH 7.2) containing $100\;{\mu}/l$ free chlorine, or $2\;{\mu}/l$ ozonated water ($O_3$). Then, samples were packaged in 30-${\mu}m$ polyethylene bags and stored at $5^{\circ}C$ for 9 days. No significant differences were observed in gas composition and color parameters ($L^*$, $a^*$, $b^*$, and hue angle) among different sanitizers with contact times. No off-odor was detected during the storage. A longer contact time was not effective in reducing microbial population, except with $O_3$ washing. $O_3$ with 90 s was not much effective in reducing microbial population compared with Cl or EW. However, samples washed with $O_3$ for 180 s observed the lowest numbers of total aerobic and coliform plate counts. The result suggested that, a longer contact time of ozone can be used as a potential sanitizer to maintain the microbial quality and safety of fresh-cut broccoli.

Effects of Ozonated Water Treatment on Pesticide Residues and Catechin Content in Green Tea Leaves (녹차의 잔류농약과 카테친 함량에 미치는 오존수 처리 효과)

  • Jung, Kyung-Hee;Seo, Il-Won;Nam, He-Jung;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.265-270
    • /
    • 2008
  • This study examined the effects of treating green tea leaves with ozonated water by evaluating pesticide residue levels and catechin content. The pesticide residue levels of tea leaves treated with carbendazim, captain, diazinon, fenthim, dichlorvos, and chlorpyrifos ranged from 43.2 to 48.2 ppm. For leaves treated by soaking or watering with tap water, or with 0.25 ppm of ozone water for 30 min. Pesticide residue levels were reduced by 24.0-30.2%, 30.3-33.6%, 52.4-70.5%, and 65.5-80.2%, respectively. No major differences in catechin content were observed in the leaves according to the soaking and rinsing treatments using ozonated or tap water.

A Study on Dissolved Ozone Decomposer in Ozonated Water for Semiconductor Process (반도체 공정용 기능수의 용해오존 분해장치에 관한 연구)

  • Moon, Se-Ho;Chai, Sang-Hoon;Son, Young-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.6-11
    • /
    • 2011
  • We have developed dissolved ozone decompose system in the used ozonated water for the semiconductor and LCD fabrication processes, which will be base of obtaining core process technology in the high performance, low price semiconductor and LCD fabrications. Using this technology, it is possible for the semiconductor wafer and LCD planer to process more rapid and chip, and productivity will be improved.

Effects of Ozone Treatment by Microorganisms Inactivation in the Food Industry (식품산업에서의 미생물 제어를 위한 오존처리 효과)

  • Gwon, O-Jin;Kim, Su-Jin;Byeon, Myeong-U
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.149-154
    • /
    • 1996
  • In order to develovpment of new sterilizing method applied to food industry, effects of ozone treatment on microorganisms, associated with food hygiene were investigated. Microorganisms were immersed in water and sparged with ozonised air(ozone concentration, 3mg liter-1) at an air flow rate of 5 liter min-1. When organisms were treated with benzoic acid and sorbic acid of 0.4∼1.0g/$\ell$, respectively, they were not dectable perfectly. Sodium benzoate had an effect on Penicillium islandicum. When bacteria were sparged with ozonised air, Pseudomonas aeruginosa completely inhibited at 60 minutes, and the killing Aspergillus flavus and Penicillium islandicum. Also, all of bacteria were inactivated after immersed with ozonated water for 10minutes, but two fungal species were not effective.

  • PDF