1 |
J. Chaichanawong, T. Yamanoto, and T. Ohmori. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol, J. Hazard. Mater., 175, 673-679 (2010).
DOI
|
2 |
K. Yaghmaeian, G. Moussavi, and A. Alahabadi, Removal of amoxicillin from contaminated water using -activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration, Chem. Eng. J., 236, 538-544 (2014).
DOI
|
3 |
J. Rivera-Utrilla and M. Sanchez-Polo. Adsorbent-adsorbate interactions in the adsorption of organic and inorganic species on ozonized activated carbons: A short review, Adsorption, 17, 611-620 (2011).
DOI
|
4 |
T. D. Reynolds and P. A. Richards, Unit Operations and Process in Environmental Engineering, 2nd Ed., PWS, MA, USA (1996).
|
5 |
X. He, M. Elkouz, M. Inyang, E. Dickenson, and E. C. Wert, Ozone regeneration of granular activated carbon for trihalomethane control, J. Hazard. Mater., 326, 101-109 (2017).
DOI
|
6 |
J. W. Park, H.-C. Kim, A. S. Meyer, S. Kim, and S. K. Maeng, Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant, Chemosphere, 160, 189-198 (2016).
DOI
|
7 |
B. W. Lykins Jr., R. M. Clark, and J. Q. Adams, Granular activated carbon for controlling THMs, J. Am. Water Works Assoc., 80(5), 85-92 (1988).
DOI
|
8 |
R. J. Martin and W. J. Ng, The thermal regeneration of exhausted activated carbon: The balance between weight loss and regeneration efficiency. In: L. Pawlowski, W. J. Lacy, and J. J. Dlugosz (eds), Chemistry for the Protection of the Environment, pp. 427-438, Environmental Science Research, vol 42. Springer, MA, USA (1991)
|
9 |
I. Lee, E. Lee, H. Lee, and K. Lee, Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone, Appl. Chem. Eng., 22(6), 617-622 (2011).
|
10 |
A. Bachar, B. Gurzeda, J. Zembrzuska, M. Nocun, and P. Krawczyk, Regeneration of expanded graphite electrodes by joined electrochemical and ozone treatment in liquid phase, J. Solid State Electrochem., 22, 3965-3975 (2018).
DOI
|
11 |
P. M. Alvarez, F. J. Beltran, V. Gomez-Serrano, J. Jaramillo, and E. M. Rodriguez, A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment, Appl. Catal. B: Environ., 92, 393-400 (2009).
DOI
|
12 |
H. Lee, E. Lee, C.H. Lee, and K. Lee, Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation, J. Ind. Eng. Chem., 17(3), 468-473 (2011).
DOI
|
13 |
H. T. Luu, D. N. Minh, and K. Lee, Effects of advanced oxidation of penicillin on biotoxicity, biodegradability and subsequent biological treatment, Appl. Chem. Eng., 29(6), 690-695 (2018).
DOI
|
14 |
APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA (2005).
|
15 |
F. S. Cannon, V. L. Snoryink, R. G. Lee, G. Dagois, and J. R. Dewolfe. Effect of calcium in field-spent GACs on pore development during regeneration, J. Am. Water Works Assoc., 85(3), 76-89 (1993).
DOI
|
16 |
Y. Guo and E. Du, The effects of thermal regeneration conditions and inorganic compounds on the characteristics of activated carbon used in power plant, Energy Procedia, 17, 444-449 (2012).
DOI
|
17 |
H. Valdes, M. Sanchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111-2116 (2002).
DOI
|