• Title/Summary/Keyword: oxyhydroxide

Search Result 27, Processing Time 0.022 seconds

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

Quantification of Bacterial Attachment-related Parameters in Porous Media

  • Park, Seong-Jik;Lee, Chang-Gu;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Transport of Escherichia coli ATCC 11105 through porous media was investigated in this study using two sets of column experiments to quantify the attachment-related parameters (sticking efficiency, attachment rate coefficient and filter factor). The first set of experiments was performed in quartz sand under different ionic strength conditions (1, 20, 100, 200 mM) while the second experiments were carried out in quartz sand mixed with metal oxyhydroxide-coated sand (0, 5, 10, 25%). The breakthrough curves of bacteria were obtained by monitoring effluent, and then bacterial mass recovery and attachment-related parameters were quantified from these curves. The first experiments showed that the mass recoveries were in the range of 13.3 to 64.7%, decreasing with increasing ionic strength. In the second experiments, the mass recoveries were in the range of 15.0 to 43.4%, decreasing with increasing coated sand content. The analysis indicated that the sticking efficiency, attachment rate coefficient and filter factor increased with increasing ionic strength and coated sand content. The value of filter factor in the first experiments ranged from 1.45 e-2 to 6.72 e-2 1/cm while in the second experiments it ranged from 2.78 e-2 to 6.32 e-2 1/cm. Our filter factor values are one order of magnitude lower than those from other studies. This discrepancy can be attributed to the size of sand used in the experiment. The analysis demonstrated that the travel distance of bacteria estimated using the filter factor can be varied greatly depending on the solution chemistry and charge heterogeneity of porous media.

Geochemistry of Stream Water around the Abandoned Boeun Coal Mine, Hoenam Area (보은제일폐탄광 주변 하천수의 지구화학적 특징)

  • Jeon, Seo-Ryeong;Shin, Ik-Jong;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Stream water chemistry in the abandoned Boeun Jeil coal mine area was studied for a period of 3 months, including rainy and dry season. The stream waters were a nearly neutral and slightly alkali condition, and $Mg-SO_4$ type with Mg>Ca>Na>K and $SO_4>HCO_3>Cl>NO_3$. Chemical composition of the stream water was quite irregular during the experimental period. Concentrations of Na, K, $HCO_3$, U, Sr, and Cr decreased by $10{\sim}30%$ during rainy season, caused by dilution effects with rain. The concentration of Ca, Mg, $NO_3$, Cd, and Co increased during the rainy season, caused by more easily dissolved from bedrocks or mine drainage with slightly acidic condition than dry season. The stream water was enriched in Mg, Ca, $HCO_3$, $SO_4$, Al, Fe, Zn, Ni, Co, Cr, Cd, Sr and U. Concentrations of Na, Mg, Ca, $SO_4$, $HCO_3$, Fe, Zn, Ni, Sr, and U decreased linearly with distance from the mine adit. These elements were strongly controlled by dilution of unpolluted water influx and/or adsorption on the clay minerals and iron oxyhydroxide precipitates. This mine area exhibited two main weathering processes ; 1) oxidation with acidification derived from Fe sulphides, and 2) pH buffering due to Ca and Mg carbonate dissolution. This weathering processes were followed by adsorption of metals on iron oxyhydroxides and precipitation.

  • PDF

A Study of Hexavalent Chromium Reduction by Iron Sulfide (황화철에 의한 6가 크롬의 환원에 관한 연구)

  • Jo, Se-I;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.657-662
    • /
    • 2005
  • Iron sulfide(FeS) is significantly produced through both abiotic and biotic processes in natural sediments and pore waters. In this study, chromium(VI) reaction with iron sulfide at various initial concentrations and at pH values of 4 and 8 was conducted to better understand the interactions between Cr(VI) and Fe(II) species dissolved from iron sulfide in both the aqueous and solid phases. Also, the removal efficiency of iron sulfide was compared with zero valent iron and other iron bearing oxides such as ${\alpha}-Fe_2O_3$, ${\alpha}-FeOOH$ and $Fe_3O_4$. The Cr(VI) removal rate by iron sulfide was higher at pH 4 than at pH 8 because more dissolved Fe(II) existed at pH 4 than at pH 8. Chromium and iron(oxyhydroxide) could be identified on the iron sulfide surface with transmission microscopy imaging and energy dispersive spectroscopy. The removal capacity of iron sulfide was much higher than zero valent iron and other iron oxide minerals due to the synergic effect of hydrogen sulfide and ferrous iron.

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.

Tuning of the Interparticle interactions in ultrafine ferrihydrite nanoparticles

  • Knyazev, Yuriy V.;Balaev, Dmitry A.;Yaroslavtsev, Roman N.;Krasikov, Aleksandr A.;Velikanov, Dmitry A.;Mikhlin, Yuriy L.;Volochaev, Mikhail N.;Bayukov, Oleg A.;Stolyar, Sergei V.;Iskhakov, Rauf S.
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.605-616
    • /
    • 2022
  • We prepared two samples of ultrafine ferrihydrite (FH) nanoparticle ensembles of quite a different origin. First is the biosynthesized sample (as a product of the vital activity of bacteria Klebsiella oxytoca (hereinafter marked as FH-bact) with a natural organic coating and negligible magnetic interparticle interactions. And the second one is the chemically synthesized ferrihydrite (hereinafter FH-chem) without any coating and high level of the interparticle interactions. The interparticle magnetic interactions have been tuned by modifying the nanoparticle surface in both samples. The coating of the FH-bact sample has been partially removed by annealing at 150℃ for 24 h (hereinafter FH-annealed). The FH-chem sample, vice versa, has been coated (1.0 g) with biocompatible polysaccharide (arabinogalactan) in an ultrasonic bath for 10 min (hereinafter FH-coated). The changes in the surface properties of nanoparticles have been controlled by XPS. According to the electron microscopy data, the modification of the nanoparticle surface does not drastically change the particle shape and size. A change in the average nanoparticle size in sample FH-annealed to 3.3 nm relative to the value in the other samples (2.6 nm) has only been observed. The estimated particle coating thickness is about 0.2-0.3 nm for samples FH-bact and FH-coated and 0.1 nm for sample FH-annealed. Mössbauer and magnetization measurements are definitely shown that the drastic change in the blocking temperature is caused by the interparticle interactions. The experimental temperature dependences of the hyperfine field hf>(T) for samples FH-bact and FH-coated have not revealed the effect of interparticle interactions. Otherwise, the interparticle interaction energy Eint estimated from the hf>(T) for samples FH-chem and FH-annealed has been found to be 121kB and 259kB, respectively.

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine (흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.299-308
    • /
    • 2021
  • Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.