Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.6.605

Tuning of the Interparticle interactions in ultrafine ferrihydrite nanoparticles  

Knyazev, Yuriy V. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Balaev, Dmitry A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Yaroslavtsev, Roman N. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Krasikov, Aleksandr A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Velikanov, Dmitry A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Mikhlin, Yuriy L. (Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS)
Volochaev, Mikhail N. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Bayukov, Oleg A. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Stolyar, Sergei V. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Iskhakov, Rauf S. (Kirensky Institute of Physics, Federal Research Center KSC SB RAS)
Publication Information
Advances in nano research / v.12, no.6, 2022 , pp. 605-616 More about this Journal
Abstract
We prepared two samples of ultrafine ferrihydrite (FH) nanoparticle ensembles of quite a different origin. First is the biosynthesized sample (as a product of the vital activity of bacteria Klebsiella oxytoca (hereinafter marked as FH-bact) with a natural organic coating and negligible magnetic interparticle interactions. And the second one is the chemically synthesized ferrihydrite (hereinafter FH-chem) without any coating and high level of the interparticle interactions. The interparticle magnetic interactions have been tuned by modifying the nanoparticle surface in both samples. The coating of the FH-bact sample has been partially removed by annealing at 150℃ for 24 h (hereinafter FH-annealed). The FH-chem sample, vice versa, has been coated (1.0 g) with biocompatible polysaccharide (arabinogalactan) in an ultrasonic bath for 10 min (hereinafter FH-coated). The changes in the surface properties of nanoparticles have been controlled by XPS. According to the electron microscopy data, the modification of the nanoparticle surface does not drastically change the particle shape and size. A change in the average nanoparticle size in sample FH-annealed to 3.3 nm relative to the value in the other samples (2.6 nm) has only been observed. The estimated particle coating thickness is about 0.2-0.3 nm for samples FH-bact and FH-coated and 0.1 nm for sample FH-annealed. Mössbauer and magnetization measurements are definitely shown that the drastic change in the blocking temperature is caused by the interparticle interactions. The experimental temperature dependences of the hyperfine field hf>(T) for samples FH-bact and FH-coated have not revealed the effect of interparticle interactions. Otherwise, the interparticle interaction energy Eint estimated from the hf>(T) for samples FH-chem and FH-annealed has been found to be 121kB and 259kB, respectively.
Keywords
ferrihydrite ultrafine nanoparticles; hyperfine structure; interparticle interactions; iron oxyhydroxide; superparamagnetic relaxation; surface coatings;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Papaefthymiou, G.C. (2010), "The Mossbauer and magnetic properties of ferritin cores", Biochim. Biophys. Acta, 1800(8), 886-897. https://doi.org/10.1016/j.bbagen.2010.03.018.   DOI
2 Barani, M., Sargazi, S., Mohammadzadeh, V., Rahdar, A., Pandey, S., Jha, N.K., Gupta, P.K. and Thakur, V.K. (2021b), "Theranostic advances of bionanomaterials against gestational diabetes mellitus: A preliminary review", J. Funct. Biomater., 12(4), 54. https://doi.org/10.3390/JFB12040054.   DOI
3 Barani, M., Reza Hajinezhad, M., Sargazi, S., Zeeshan, M., Rahdar, A., Pandey, S., Khatami, M. and Zargari, F. (2021c), "Simulation, in vitro and in vivo cytotoxicity assessments of methotrexate-loaded ph-responsive nanocarriers", Polymers, 13(18), 3153. https://doi.org/10.3390/polym13183153.   DOI
4 Klingelhofer, G., Morris, R.V., Bernhardt, B., Schroder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gutlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W. and Arvidson, R.E. (2004), "Jarosite and hematite at meridiani planum from opportunity's Mossbauer spectrometer", Science, 306(5702), 1740-1745. http://doi.org/10.1126/science.1104653.   DOI
5 Engel, M., Lezama Pacheco, J.S., Noel, V., Boye, K. and Fendorf, S. (2021), "Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite", Sci. Total Environ., 750, 141485. https://doi.org/10.1016/j.scitotenv.2020.1414.   DOI
6 Berquo, T.S., Erbs, J.J., Lindquist, A., Penn, R.L. and Banerjee, S.K. (2009), "Effects of magnetic interactions in antiferromagnetic ferrihydrite particles", J. Phys. Condens. Mat., 21(17), 176005. https://doi.org/10.1088/0953-8984/21/17/176005.   DOI
7 Sargazi, S., Hajinezhad, M.R., Rahdar, A., Zafar, M.N., Awan, A. and Baino, F. (2021), "Assessment of SnFe2O4 nanoparticles for potential application in theranostics: Synthesis, characterization, in vitro and in vivo toxicity", Materials, 14(4), 1-19. https://doi.org/10.3390/ma14040825.   DOI
8 Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart, R.S.C. (2011), "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., 257(7), 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051.   DOI
9 Bishop, J.L., Pieters, C. and Burns, R.G. (1993), "Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials", Geochim. Cosmochim. Acta, 57(19), 4583-4595. https://doi.org/10.1016/0016-7037(93)90184-x.   DOI
10 Chilom, C.G., Zorila, B., Bacalum, M., Balasoiu, M., Yaroslavtsev, R., Stolyar, S. V. and Tyutyunnicov S. (2020), "Ferrihydrite nanoparticles interaction with model lipid membranes", Chem. Phys. Liq., 226, 104851. https://doi.org/10.1016/j.chemphyslip.2019.104851.   DOI
11 Frandsen, C. and Morup, S. (2003), "Inter-particle interactions in composites of antiferromagnetic nanoparticles", J. Magn. Magn. Mater., 266(1-2), 36-48. https://doi.org/10.1016/S0304-8853(03)00453-0.   DOI
12 Velikanov, D.A. (2013), "Squid magnetometer for investigations of the magnetic properties of materials in the temperature range 4.2-370 K", Sib. J. Sci. Technol., 2(48), 176.
13 Stolyar, S.V., Kryukova, O.V., Yaroslavtsev, R.N., Bayukov, O.A., Knyazev, Y.V., Gerasimova, Y.V., Pyankov, V.F., Latyshev, N.V. and Shestakov, N.P. (2021b), "Influence of magnetic nanoparticles on cells of Ehrlich ascites carcinoma", AIP Adv., 11(1), 015019. https://doi.org/10.1063/9.0000165.   DOI
14 Wickman, H.H., Klein, M.P. and Shirley, D.A. (1966), "Paramagnetic hyperfine structure and relaxation effects in mossbauer spectra: Fe57 in ferrichrome", Phys. Rev., 152(1), 345. https://doi.org/10.1103/PhysRev.152.345.   DOI
15 Yamada H. (2000), Bioactive Arabinogalactan-Proteins and Related Pectic Polysaccharides in Sino-Japanese Herbal Medicines, in: Cell and Developmental Biology of Arabinogalactan-Proteins, Springer, Boston, U.S.A. https://doi.org/10.1007/978-1-4615-4207-0_19.   DOI
16 Zhao, J., Huggins, F.E., Feng, Z. and Huffman, G.P. (1996), "Surface-induced superparamagnetic relaxation in nanoscale ferrihydrite particles", Phys. Rev. B, 54(5), 3403-3407. https://doi.org/10.1103/physrevb.54.3403.   DOI
17 Xu, W., Hausner, D.B., Harrington, R., Lee, P.L., Strongin, D.R. and Parise, J.B. (2011), "Structural water in ferrihydrite and constraints this provides on possible structure models", Am. Mineralogist, 96(4), 513-520. https://doi.org/10.2138/am.2011.3460.   DOI
18 Yakushkin, S.S., Balaev, D.A., Dubrovskiy, A.A., Semenov, S.V., Knyazev, Y.V., Bayukov, O.A., Kirillov, V.L., Ivantsov, R.D., Edelman, I.S. and Martyanov, O.N. (2018), "ε-Fe2O3 nanoparticles embedded in silica xerogel - Magnetic metamaterial", Ceram. Int., 44(15), 17852-17857. https://doi.org/10.1016/j.ceramint.2018.06.254.   DOI
19 Yang, Y., Tian, Q., Wu, S., Li, Y., Yang, K., Yan, Y., Shang, L., Li, A., Zhang, L. (2021), "Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy", Biomaterials, 271, 120739. https://doi.org/10.1016/j.biomaterials.2021.1.   DOI
20 Abbasi, A.Z., Gutierrez, L., del Mercato, L.L., Herranz, F., Chubykalo-Fesenko, O., Veintemillas-Verdaguer, S., Parak, W.J., Puerto Morales, M, Gonzalez, J.M, Hernando, A and de la Presa, P. (2011), "Magnetic capsules for NMR imaging: Effect of magnetic nanoparticles spatial distribution and aggregation", J. Phys. Chem. C, 115(14), 6257-6264. https://doi.org/10.1021/jp1118234.   DOI
21 Groman, E.V., Menz, E.T., Enriquez, P.M., Jung, C., Lewis, J.M. and Josephson, L. (1996), "Delivery of therapeutic agents to receptors using polysaccharides", U.S. Patent No. 5,554,386; Washington, U.S.A.
22 Weidler, P.G. and Stanjek, H. (1998), "The effect of dry heating of synthetic 2-line and 6-line ferrihydrite: II. Surface area, porosity and fractal dimension", Clay Miner., 33(2), 277-284. https://doi.org/10.1180/000985598545471.   DOI
23 Mallet, M., Barthelemy, K., Ruby, C., Renard, A. and Naille, S. (2013), "Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy", J. Colloid Interf. Sci., 407, 95-101. https//doi.org/10.1016/j.jcis.2013.06.049.   DOI
24 Kocar, B.D., Borch, T. and Fendorf, S. (2010), "Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite", Geochim. Cosmochim. Acta, 74(3), 980-994. http://doi.org/10.1016/j.gca.2009.10.023.   DOI
25 Landers, J., Stromberg, F., Darbandi, M., Schoppner, C., Keune, W. and Wende, H. (2014), "Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles", J. Phys. Condens. Mat., 27(2), 026002. https://doi.org/10.1088/0953-8984/27/2/026002.   DOI
26 Lunin, A.V., Lizunova, A.A., Mochalova, E.N., Yakovtseva, M.N., Cherkasov, V.R., Nikitin, M.P. and Kolychev, E.L. (2020), "Hematite nanoparticles from unexpected reaction of ferrihydrite with concentrated acids for biomedical applications", Molecules, 25(8), 1984. https://doi.org/10.3390/molecules25081984.   DOI
27 Kuhn, L.T., Lefmann, K., Bahl, C.R.H., Ancona, S.N., Lindgard, P.A., Frandsen, C., Madsen, D.E. and Morup, S. (2006), "Neutron study of magnetic excitations in8-nmα-Fe2O3 nanoparticles", Phys. Rev. B, 74(18), 184406. https://doi.org/10.1103/physrevb.74.184406.   DOI
28 Liu, H., Li, X., Wang, Y., Yang, X., Zhen, Z., Chen, R., Hou, D. and Wei, Y. (2014), "New insight into the effect of the formation environment of ferrihydrite on its structure and properties", RSC Adv., 4(22), 11451-11458. http://doi.org/10.1039/c4ra00696h.   DOI
29 Morup, S. and Hansen, B.R. (2005), "Uniform magnetic excitations in nanoparticles", Phys. Rev. B, 72(2), 024418. https://doi.org/10.1103/PhysRevB.72.024418.   DOI
30 Yusoff, A.H., Salimi, M.N. and Jamlos, M.F. (2018), "A review: Synthetic strategy control of magnetite nanoparticles production", Adv. Nano Res., 6(1), 1-19. https://doi.org/10.12989/anr.2018.6.1.001.   DOI
31 Mukhtar, M., Sargazi, S., Barani, M., Madry, H., Rahdar, A. and Cucchiarini, M. (2021), "Application of nanotechnology for sensitive detection of low-abundance single-nucleotide variations in genomic DNA: A review", Nanomaterials, 11(6), 1384. https://doi.org/10.3390/nano11061384.   DOI
32 Almanghadim, H.G., Nourollahzadeh, Z., Khademi, N.S., Tezerjani, M.D., Sehrig, F.Z., Estelami, N., Shirvaliloo, M., Sheervalilou, R. and Sargazi, S. (2021), "Application of nanoparticles in cancer therapy with an emphasis on cell cycle", Cell Biol. Int., 45(10), 1989-1998. https://doi.org/10.1002/cbin.11658.   DOI
33 Balaev, D.A., Krasikov, A.A., Stolyar, S.V., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N., Bayukov, O.A., Vorotynov, A.M., Volochaev, M.N. and Dubrovskiy, A.A. (2016b), "Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing", Phys. Solid State, 58(9), 1782-1791. https://doi.org/10.1134/s1063783416090092.   DOI
34 Balaev, D.A., Krasikov, A.A., Balaev, A.D., Stolyar, S.V., Ladygina, V.P. and Iskhakov, R.S. (2020), "Features of relaxation of the remanent magnetization of antiferromagnetic nanoparticles by the example of ferrihydrite", Phys. Solid State, 62(7), 1172-1178. https://doi.org/10.1134/s1063783420070033.   DOI
35 Morup, S. (1987), "Mossbauer effect studies of microcrystalline materials", Mossbauer Spectroscopy Applied To Inorganic Chemistry, 2, 89-123.
36 Morup, S., Madsen, D.E., Frandsen, C., Bahl, C.R. and Hansen, M.F. (2007), "Experimental and theoretical studies of nanoparticles of antiferromagnetic materials", J. Phys. Condens. Mat., 19(21), 213202. https://doi.org/10.1088/0953-8984/19/21/213202.   DOI
37 Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Bayukov, O.A., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N. (2016a), "Magnetic properties of heat treated bacterial ferrihydrite nanoparticles", J. Magn. Magn. Mater., 410, 171-180. https://doi.org/10.1016/j.jmmm.2016.02.059.   DOI
38 Barani, M., Zeeshan, M., Kalantar-Neyestanaki, D., Farooq, M.A., Rahdar, A., Jha, N.K., Sargazi, S., Gupta, P.K. and Thakur, V. K. (2021a), "Nanomaterials in the management of gram-negative bacterial infections", Nanomaterials, 11(10), 2535. https://doi.org/10.3390/nano11102535.   DOI
39 Bodker, F., Hansen, M.F., Koch, C.B. and Morup, S. (2000), "Particle interaction effects in antiferromagnetic NiO nanoparticles"", J. Magn. Magn. Mater., 221(1-2), 32-36. https://doi.org/10.1016/S0304-8853(00)00392-9.   DOI
40 De la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M. P., Rivero, G. and Hernando, A. (2012), "Study of heating efficiency as a function of concentration, size and applied field in γ-Fe2O3 nanoparticles", J. Phys. Chem. C, 116(48), 25602-25610. https://doi.org/10.1021/jp310771p.   DOI
41 Fiorani, D., Dormann, J.L., Cherkaoui, R., Tronc, E., Lucari, F., D'Orazio, F., Spinu, L., Nogues, M., Garcia, A., Testa, A. M. (1999), "Collective magnetic state in nanoparticles systems" J. Magn. Magn. Mater., 196, 143-147. https://doi.org/10.1016/s0304-8853(98)00694-5.   DOI
42 Petrov, D., Lin, C.R., Ivantsov, R., Ovchinnikov, S.G., Zharkov, S., Yurkin, G., Velikanov, D.A., Knyazev, Y.V., Molokeev, M.S., Tseng, Y.T., Lin, E.S., Edelman, I.S., Baskakov, A.O., Starchikov, S.S. and Lyubutin, I.S. (2020), "Characterization of the iron oxide phases formed during the synthesis of core-shell FexOy@C nanoparticles modified with Ag", Nanotechnology, 31, 395703. https://doi.org/10.1088/1361-6528/ab9af2.   DOI
43 Rahdar, A., Hajinezhad, M. R., Barani, M., Sargazi, S., Zaboli, M., Ghazy, E., Baino, F., Cucchiarini, M., Bilal, M. and Pandey, S. (2022), "Pluronic F127/doxorubicin microemulsions: preparation, characterization and toxicity evaluations", J. Mol. Liq., 345, 117028. https://doi.org/10.1016/j.molliq.2021.117028.   DOI
44 Hong, R.Y., Feng, B., Chen, L.L., Liu, G.H., Li, H.Z., Zheng, Y. and Wei, D.G. (2008), "Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles", Biochem. Eng. J., 42(3), 290-300. https://doi.org/10.1016/j.bej.2008.07.009.   DOI
45 Papaefthymiou, G.C., Devlin, E., Simopoulos, A., Yi, D.K., Riduan, S.N., Lee, S.S. and Ying, J.Y. (2009), "Interparticle interactions in magnetic core/shell nanoarchitectures", Phys. Rev. B, 80(2), 024406. https://doi.org/10.1103/PhysRevB.80.024406.   DOI
46 Schwertmann, U., Friedl, J. and Stanjek, H. (1999), "From Fe(III) ions to ferrihydrite and then to hematite", J. Colloid Interf. Sci., 209(1), 215-223. http://doi.org/10.1006/jcis.1998.5899.   DOI
47 Morup, S., Hansen, M.F., Frandsen, C. (2010), "Magnetic interactions between nanoparticles", Beilstein J. Nanotechnol., 1, 182-190. https://doi.org/10.3762/bjnano.1.22.   DOI
48 Hiemstra, T. (2013), "Surface and mineral structure of ferrihydrite", Geochim. Cosmochim. Acta, 105, 316-325. https://doi.org/10.1016/j.gca.2012.12.002.   DOI
49 Rivas Rojas, P.C., Tancredi, P., Moscoso Londono, O., Knobel, M. and Socolovsky, L.M. (2018), "Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles", J. Magn. Magn. Mat., 451, 688-696. https://doi.org/10.1016/j.jmmm.2017.11.099.   DOI
50 Grosvenor, A.P., Kobe, B.A., McIntyre, N.S., Tougaard, S. and Lennard, W.N. (2004), "Use of QUASES™/XPS measurements to determine the oxide composition and thickness on an iron substrate', Surf. Interf. Anal., 36(7), 632-639. https://doi.org/10.1002/sia.1842.   DOI
51 Holsen, T.M., Taylor, E.R., Seo, Y.C. and Anderson, P.R. (1991), "Removal of sparingly soluble organic chemicals from aqueous solutions with surfactant-coated ferrihydrite", Environ. Sci. Technol., 25(9), 1585-1589. https://doi.org/10.1021/es00021a009.   DOI
52 Guyodo, Y., Banerjee, S.K., Penn, R.L., Burleson, D., Berquo, T.S., Seda, T. and Solheid, P. (2006), "Magnetic properties of synthetic six-line ferrihydrite nanoparticles", Phys. Earth Planet. In., 154(3-4), 222-233. https://doi.org/10.1016/j.pepi.2005.05.009.   DOI
53 Hansen, M.F., Koch, C.B. and Morup, S. (2000), "Magnetic dynamics of weakly and strongly interacting hematite nanoparticles", Phys. Rev. B, 62(2), 1124. http://doi.org/10.1103/PhysRevB.62.1124.   DOI
54 Hiemstra, T. (2018), "Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite and maghemite", Environ. Sci., 5, 752-764. https://doi.org/10.1039/C7EN01060E.   DOI
55 Knyazev, Y.V., Balaev, D.A., Stolyar, S.V., Krasikov, A.A., Bayukov, O.A., Volochaev, M.N., Yaroslavtsev, R.N., Ladygina, V.P., Velikanov, D.A. and Iskhakov, R.S. (2022), "Interparticle magnetic interactions in synthetic ferrihydrite: Mossbauer spectroscopy and magnetometry study of the dynamic and static manifestations", J. Alloy. Compd., 889, 161623. https://doi.org/10.1016/j.jallcom.2021.161623.   DOI
56 Sheervalilou, R., Shirvaliloo, M., Sargazi, S., Shirvalilou, S., Shahraki, O., Pilehvar-Soltanahmadi, Y., Sarhadi, A., Nazarlou, Z., Ghaznavi, H. and Khoei, S. (2021), "Application of nanobiotechnology for early diagnosis of SARS-CoV-2 infection in the COVID-19 pandemic", Appl. Microbiol. Biotechnol., 105(7), 2615-2624. https://doi.org/10.1007/s00253-021-11197-y.   DOI
57 Stolyar, S.V., Balaev, D.A., Ladygina, V.P., Dubrovskiy, A.A., Krasikov, A.A., Popkov, S.I., Bayukov, O.A., Knyazev, Yu.V., Yaroslavtsev, R.N., Volochaev, M.N., Iskhakov, R.S., Dobretsov, K.G., Morozov, E.V., Falaleev, O.V., Inzhevatkin, E.V., Kolenchukova, O.A. and Chizhova, I.A. (2018), "Bacterial ferrihydrite nanoparticles: preparation, magnetic properties and application in medicine", J. Supercond. Nov. Magn., 31, 2297. https://doi.org/10.1007/s10948-018-4700-1.   DOI
58 Abdolvand, E., Farzinpour, A. and Vaziry, A. (2020), "Effects of supplementation cysteine-coated Fe3O4 nanoparticles compared to Fe3O4, on reproductive performance in male quail", Adv. Nano Res., 9(1), 15-24. https://doi.org/10.12989/anr.2020.9.1.015   DOI
59 Kolovskaya, O.S., Zamay, T.N., Zamay, G.S., Babkin, V.A., Medvedeva, E.N., Neverova, N.A., Kirichenko, A.K., Zamay, S.S., Lapin, I. N., Morozov, E.V., Sokolov, A.E., Narodov, A.A., Fedorov, D.G., Tomilin, F.N., Zabluda, V.N., Alekhina, Y.., Lukyanenko, K.A., Glazyrin, Y.E., Svetlichnyi, V.A., Berezovski, M.V. and Kichkailo, A.S. (2020), "Aptamerconjugated superparamagnetic ferroarabinogalactan nanoparticles for targeted magnetodynamic therapy of cancer", Cancers, 12(1), 216. https://doi.org/10.3390/cancers12010216.   DOI
60 Stolyar, S.V., Yaroslavtsev, R.N., Iskhakov, R.S., Bayukov, O.A., Balaev, D.A., Dubrovskii, A.A., Krasikov A.A., Ladygina, V.P., Vorotynov, A.M., Volochaev, M.N. (2017). "Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt", Phys. Solid State, 59(3), 555-563. https://doi.org/10.1134/s1063783417030301.   DOI
61 Supraja, N., Tollamadugu, N.V.K.V.P. and Adam, S. (2016), "Phytogenic silver nanoparticles (Alstonia scholaris) incorporated with epoxy coating on PVC materials and their biofilm degradation studies", Adv. Nano Res., 4(4), 281. https://doi.org/10.12989/anr.2016.4.4.281   DOI
62 Wabler, M., Zhu, W., Hedayati, M., Attaluri, A., Zhou, H., Mihalic, J., Geyh, A., DeWeese, T.L., Ivkov, R. and Artemov, D. (2014), "Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content", Int. J. Hyperther., 30(3), 192-200. https://doi.org/10.3109/02656736.2014.913321.   DOI
63 Stolyar, S.V., Kolenchukova, O.A., Boldyreva, A.V., Kudryasheva, N.S., Gerasimova, Y.V., Krasikov, A.A., Yaroslavtsev, R.N., Bayukov, O.A., Ladygina, V.P., Birukova, E.A. (2021a), "Biogenic ferrihydrite nanoparticles: Synthesis, properties in vitro and in vivo testing and the concentration effect", Biomedicines, 9(3), 323. https://doi.org/10.3390/biomedicines9030323.   DOI
64 Brinza, L., Vu, H.P., Neamtu, M. and Benning, L.G. (2019), "Experimental and simulation results of the adsorption of Mo and V onto ferrihydrite", Sci. Rep., 9(1), 1-12. https://doi.org/10.1038/s41598-018-37875-y.   DOI
65 Frandsen, C. and Morup, S. (2005), "Spin rotation in α-Fe2O3 nanoparticles by interparticle interactions", Phys. Rev. Lett., 94(2), 027202. https://doi.org/10.1103/PhysRevLett.94.027202.   DOI
66 Kamble, V., Kodwani, G., Sridharkrishna, R. and Ankamwar, B. (2014), "Synthesis of anisotropic defective polyaniline/silver nanocomposites", Adv. Nano Res., 2(2), 111-119. https://doi.org/10.12989/anr.2014.2.2.111.   DOI
67 Knyazev, Y.V., Balaev, D.A., Stolyar, S.V., Bayukov, O.A., Yaroslavtsev, R.N., Ladygina, V.P., Velikanov, D.A. and Iskhakov, R.S. (2020), "Magnetic anisotropy and core-shell structure origin of the biogenic ferrihydrite nanoparticles", J. Alloy. Compd., 851, 156753. https://doi.org/10.1016/j.jallcom.2020.156753.   DOI
68 Lopez-Ruiz, R., Luis, F., Sese, J., Bartolome, J., Deranlot, C. and Petroff, F. (2010), "Zero-temperature spin-glass freezing in selforganized arrays of Co nanoparticles", Europhys. Lett., 89(6), 67011. https://doi.org/10.1209/0295-5075/89/67011.   DOI
69 Rahdar, A., Hajinezhad, M. R., Sargazi, S., Zaboli, M., Barani, M., Baino, F., Bilal, M. and Sanchooli, E. (2021), "Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: Evidence from in vitro and in vivo studies", Nanomaterials, 11(3), 817. https://doi.org/10.3390/nano11030817.   DOI
70 Sokolov, I. L., Cherkasov, V. R., Vasilyeva, A. V., Bragina, V. A. and Nikitin, M. P. (2018), "Paramagnetic Colloidal Ferrihydrite Nanoparticles for MRI Contrasting", Colloid. Surf. A, 539, 46-52. https://doi.org/10.1016/j.colsurfa.2017.11.062   DOI