Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.2.299

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine  

Shin, Ji-Hwan (School of Earth System Sciences, Kyungpook National University)
Park, Ji-Yeon (School of Earth System Sciences, Kyungpook National University)
Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.54, no.2, 2021 , pp. 299-308 More about this Journal
Abstract
Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.
Keywords
acid mine drainage; ferrihydrite; goethite; mineral transformation; heavy metal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aredes, S., Klein, B. and Pawlik, M. (2013) The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod., v.60, p.71-76. doi: 10.1016/j.jclepro.2012.10.035   DOI
2 Fuller, C.C., Davis, J.A. and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, v.57, p.2271-2282. doi: 10.1016/0016-7037(93)90568-H   DOI
3 Goldberg, S. and Johnston, C.T. (2001) Mechanism of arsenic adsorption on amorphous oxides: evaluated using macroscopic measurements vibrational spectroscopy and surface complexation modeling. J. Colloid Interf. Sci., v.234, p.204-216. doi: 10.1006/jcis.2000.7295   DOI
4 Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K. and Fendorf, S. (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta, v.67, p.2977-2992. doi: 10.1016/S0016-7037(03)00276-X   DOI
5 Hiemstra, T. and Van Riemsdijk, W.H. (2009) A surface structural model for ferrihydrite: I. Sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta, v.73, p.4423-4436. doi: 10.1016/j.gca.2009.04.032   DOI
6 Jia, Y.F., Xu, L., Wang, X. and Demopoulos, G.P. (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta, v.71, p.1643-1654. doi: 10.1016/j.gca.2006.12.021   DOI
7 Jiang, W., Lv, J., Luo, L., Yang, K., Lin, Y., Hu, F., Zhang, J. and Zhang, S. (2013) Arsenate and cadmium co-adsorption and coprecipitation on goethite. J. Hazard. Mater., v.262, p.55-63. doi: 10.1016/j.jhazmat.2013.08.030   DOI
8 Johnston, C.P. and Chrysochoou, M. (2016) Mechanisms of chromate, selenate, and sulfate adsorption on al-substituted ferrihydrite: implications for ferrihydrite surface structure and reactivity. Environ. Sci. Technol., v.50, p.3589-3596. doi: 10.1021/acs.est.5b05529   DOI
9 Boland, D.D., Collins, R.N., Miller, C.J., Glover, C.J. and Waite, T.D. (2014) Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ. Sci. Technol., v.48, p.5477-5485. doi: 10.1021/es4043275   DOI
10 Antelo, J., Arce, F. and Fiol, S. (2015) Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chem. Geol., v.410, p.53-62. doi: 10.1016/j.chemgeo.2015.06.011   DOI
11 Burleson, D.J. and Penn, R.L. (2006) Two-step growth of goethite from ferrihydrite. Langmuir, v.22, p.402-409. doi: 10.1021/la051883g   DOI
12 Cismasu, A.C., Michel, F.M., Tcaciuc, A.P., Tyliszczak, T. and Brown, J.G.E. (2011) Composition and structural aspects of naturally occurring ferrihydrite. Compt. Rendus Geosci., v.343, p.210-218. doi: 10.1016/j.crte.2010.11.001   DOI
13 Cornell, R.M., Giovanoli, R. and Schindler, P.W. (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays Clay Min., v.35, p.21-28. doi: 10.1346/CCMN.1987.0350103   DOI
14 Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed., Wiley-VCH, Weinheim, Germany.
15 Cudennec, Y. and Lecerf, A. (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem., v.179, p.716-722. doi: 10.1016/j.jssc.2005.11.030   DOI
16 Das, S., Hendry, M.J. and Essilfie-Dughan, J. (2013) Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem., v.28, p.185-193. doi: 10.1016/j.apgeochem.2012.10.026   DOI
17 Tokoro, C., Kadokura, M. and Kato, T. (2020) Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: a perspective review. Adv. Powder Technol., v.31, p.859-866. doi: 10.1016/j.apt.2019.12.004   DOI
18 Elzinga, E.E., Tang, Y., McDonald, J., DeSisto, S. and Reeder, R.J. (2009) Macroscopic and spectroscopic characterization of selenite, selenite, and chromate adsorption at the solid-water interface of γ-Al2O3. J. Colloid Interf. Sci., v.340, p.153-159. doi: 10.1016/j.jcis.2009.08.033   DOI
19 Schwertmann, U., Stanjek, H. and Becher, H.H. (2004) Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25℃. Clay Miner., v.39, p.433-438. doi: 10.1180/0009855043940145   DOI
20 Tang, Y., Wang, J. and Gao, N. (2010) Characteristics and model studies for fluoride and arsenic adsorption on goethite. J. Environ. Sci., v.22, p.1689-1694. doi: 10.1016/S1001-0742(09)60307-7   DOI
21 Liu, H., Li, P., Zhu, M., Wei, Y. and Sun, Y. (2007) Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite. J. Solid State Chem., v.180, p.2121-2128. doi: 10.1016/j.jssc.2007.03.022   DOI
22 Kim, H.J. and Kim, Y. (2021) Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, v.269, 128720. doi: 10.1016/j.chemosphere.2020.128720   DOI
23 Kumpulainen, S., Carlson, L. and Raisanen, M.L. (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl. Geochem., v.22, p.760-777. doi: 10.1016/j.apgeochem.2006.12.016   DOI
24 Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. and Bollinger, J.-C. (2002) Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interf. Sci., v.255, p.52-58. doi: 10.1006/jcis.2002.8646   DOI
25 Liu, J., Zhu, R., Xu, T., Xu, Y., Ge, F., Xi, Y., Zhu, J. and He, H. (2016) Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere, v.144, p.1148-1155. doi: 10.1016/j.chemosphere.2015.09.083   DOI
26 Li, Z.Z., Zhang, T. and Li, K. (2011) One-step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water. Dalton Trans., v.40, p.2062-2066. doi: 10.1039/C0DT01138J   DOI
27 Navrotsky, A., Mazeina, L. and Majzlan, J. (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science, v.319, p.1635-1638. doi: 10.1126/science.1148614   DOI
28 Mamun, A.Al., Morita, M., Matsuoka, M. and Tokoro, C. (2017) Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. J. Hazard Mater., v.334, p.142-149. doi: 10.1016/j.jhazmat.2017.03.058   DOI
29 Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. and Parise, J.B. (2007) The structure of ferrihydrite, a nanocrystalline material. Science, v.316, p.1726-1729. doi: 10.1126/science.1142525   DOI
30 Missana, T., Garcia-Gutierrez, M. and Maffiotte, C. (2003) Experimental and modeling study of the uranium (VI) sorption on goethite. J. Colloid Interface Sci., v.260, p.291-301. doi: 10.1016/S0021-9797(02)00246-1   DOI
31 Zhang, Z., Bi, X., Li, X., Zhao, Q. and Chen, H. (2018) Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Advances, v.8, p.33583-33599. doi: 10.1039/C8RA06025H   DOI
32 Vu, H.P. and Moreau, J.W. (2015) Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere, v.119, p.987-993. doi: 10.1016/j.chemosphere.2014.09.019   DOI
33 Wang, X., Liu, F., Tan, W., Li, W., Feng, X. and Sparks, D.L. (2013) Characteristics of phosphate adsorption-desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides. Soil Sci., v.178, p.1-11. doi: 10.1097/SS.0b013e31828683f8   DOI
34 Zhang, W., Singh, P., Paling, E. and Delides, S. (2004) Arsenic removal from contaminated water by natural iron ores. Miner. Eng., v.17, p.517-524. doi: 10.1016/j.mineng.2003.11.020   DOI
35 Zhao, Z., Jia, Y., Xu, L. and Zhao, S. (2011) Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Research, v.45, p.6496-6504. doi: 10.1016/j.watres.2011.09.051   DOI
36 Schwertmann, U., Bigham, J.M. and Murad, E. (1995) The first occurrence of schwertmannite in a natural stream environment. European J. Miner., v.7, p.547-552. doi: 10.1127/ejm/7/3/0547   DOI
37 Mallet, M., Barthelemy, K., Ruby, C., Renard, A. and Naille, S. (2013) Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy. J. Colloid Interface Sci., v.407, p.95-101. doi: 10.1016/j.jcis.2013.06.049   DOI
38 Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. C. R. Chim., v.12, p.876-881. doi: 10.1016/j.crci.2008.10.012   DOI
39 Pedersen, H.D., Postma, D. and Jakobsen, R. (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta, v.70, p.4116-4129. doi: 10.1016/j.gca.2006.06.1370   DOI
40 Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v.32, p.344-349. doi: 10.1021/es970421p   DOI
41 Schwertmann, U. and Fischer, W.R. (1973) Natural "amorphous" ferric hydroxide. Geoderma, v.10, p.237-247. doi: 10.1016/0016-7061(73)90066-9   DOI
42 Schwertmann, U. and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., v.31, p.277-284. doi: 10.1346/CCMN.1983.0310405   DOI