• Title/Summary/Keyword: oxygen vector

Search Result 32, Processing Time 0.031 seconds

Novel oxygenation for lipopeptide production from Bacillus sp. GB16

  • Lee, Baek-Seok;Lee, Jae-Woo;Shin, Haw-Shook;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.240-244
    • /
    • 2003
  • A novel integrated method for increasing dissolved oxygen concentration in culture media has been developed. It involves adding hydrogen peroxide to the medium, which is then decomposed to oxygen and water by catalase and adding vegetable oil to the medium as antifoam agent and oxygen vector. A new apparatus for automated addition of hydrogen peroxide to the bioreactor to keep the dissolved oxygen concentration constant over the range $10-100%\;{\pm}\;5%$ was tested. A significant increase (over threefold) of cultivation time was obtained while the dissolved oxygen concentration remained stable ($30%\;{\pm}\;5%$). Therefore, use of corn oil mixed with Ca-stearate as oxygen vector and antifoam and hydrogen peroxide as oxygen source to control excessive foam that was generated by microorganism biosurfactant, GB16-BS produced at Bacillus sp. GB16 cultivation was appropriate for stable cultivation.

  • PDF

Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus via the addition of n-Dodecane as an Oxygen Vector

  • Liu, Long;Yang, Haiquan;Zhang, Dongxu;Du, Guocheng;Chen, Jian;Wang, Miao;Sun, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.596-603
    • /
    • 2009
  • This study aimed to examine the influence of adding an oxygen vector, n-dodecane, on hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus. Owing to the high viscosity of culture broth, microbial HA production during 8-16 h was limited by the oxygen transfer coefficient $K_La$, which could be enhanced by adding n-dodecane. With the addition of n-dodecane to the culture medium to a final concentration of 5% (v/v), the average value of $K_La$ during 8-16 h was increased to $36{\pm}2h^{-1}$, which was 3.6 times that of the control without n-dodecane addition. With the increased $K_La$ and dissolved oxygen (DO) by adding 5% (v/v) of n-dodecane, a 30% increase of HA production was observed compared with the control. Furthermore, the comparison of the oxygen mass transfer in the absence and presence of n-dodecane was conducted with two proposed mathematical models. The use of n-dodecane as an oxygen vector, as described in this paper, provides an efficient alternative for the optimization of other aerobic biopolymer productions, where $K_La$ is usually a limiting factor.

Effects of Heterologous Expression of Thioredoxin Reductase on the Level of Reactive Oxygen Species in COS-7 Cells

  • Kang, Hyun-Jung;Hong, Sung-Min;Kim, Byung-Chul;Park, Eun-Hee;Ahn, Kisup;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters

  • Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.813-821
    • /
    • 2018
  • The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.

Participation of protein disulfide isomerase 2 in the tolerance against mercury toxicity in Schizosaccharomyces pombe (수은 독성에 대한 Schizosaccharomyces pombe 단백질2황화물이성질화효소 2의 저항성)

  • Choi, Jiye;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.338-346
    • /
    • 2015
  • The present work was undertaken to address the role of protein disulfide isomerase 2 (Pdi2) in the mercury-tolerance of Schizosaccharomyces pombe, using the Pdi2-overexpressing recombinant plasmid pYPDI2 and the corresponding vector plasmid pRS316. When exposed to mercuric chloride, the PDI2 overepxression cells grew significantly better than the vector control cells. They revealed the lower levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO), when incubated with mercuric chloride for 6 h, than the vector control cells. The PDI2 overepxression cells contained the higher levels of total glutathione (GSH) and superoxide dismutase (SOD) activity than the vector control cells, after 6 h of incubation in mercuric chloride. However, the PDI2 overepxression cells contained similar levels of glutathione peroxidase (GPx) activities, compared to those of the vector control cells. Taken together, the S. pombe Pdi2 promotes the tolerance against mercury toxicity through up-regulating total GSH and SOD and subsequently attenuating ROS and NO elevations.

Defensive roles of Sdu1, a PPPDE superfamily member with ubiquitin C-terminal hydrolase activity, against thermal stress in Schizosaccharomyces pombe (카르복시 말단 유비퀴틴 가수분해 효소 활성 보유 PPPDE superfamily member인 Schizosaccharomyces pombe Sdu1의 열 스트레스에 대한 방어적 역할)

  • Han, Hee;Heo, Tae Young;Ryu, In Wang;Kim, Kyunghoon;Lim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.319-328
    • /
    • 2015
  • The $sdu1^+$ gene encodes Sdu1, a PPPDE superfamily member of deubiquitinating enzymes (DUBs) in Schizosaccharomyces pombe. Sdu1 was previously shown to contain an actual ubiquitin C-terminal hydrolase (UCH) activity using the recombinant plasmid pYSTP which harbors the $sdu1^+$ gene. This work was designed to assess a thermotolerant role of Sdu1 against high incubation temperatures. In the temperature-shift experiments, the S. pombe cells harboring pYSTP grew much better after the shifts to $37^{\circ}C$ and $42^{\circ}C$, when compared with the vector control cells. After being shifted to $37^{\circ}C$ and $42^{\circ}C$ for 6 h, the S. pombe cells harboring pYSTP contained lower reactive oxygen species (ROS) levels, compared with the vector control cells. The nitric oxide (NO) levels of the S. pombe cells harboring pYSTP were slightly lower than those of the vector control cells in the absence or presence of the temperature shifting. The total glutathione (GSH) levels of the S. pombe cells harboring pYSTP were significantly higher than those of the vector control cells. Total superoxide dismutase (SOD) and GSH peroxidase activities were also higher in the S. pombe cells harboring pYSTP after the temperature shifts than in the vector control cells. In brief, the S. pombe Sdu1 plays a thermotolerant role against high incubation temperature through the down-regulation of ROS and NO and the up-regulation of total GSH content, total SOD and GSH peroxidase activities.

Thermoresistant properties of bacterioferritin comigratory protein against high temperature stress in Schizosaccharomyces pombe (Schizosaccharomyces pombe에 존재하는 bacterioferritin comigratory protein의 고온 스트레스에 대한 열저항적 성질)

  • Ryu, In Wang;Lee, Su Hee;Lim, Hye-Won;Ahn, Kisup;Park, Kwanghark;Sa, Jae-Hoon;Jeong, Kyung Jin;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • The Schizosaccharomyces pombe structural gene encoding bacterioferritin comigratory protein (BCP) was previously cloned using the shuttle vector pRS316 to generate the BCP-overexpressing plasmid pBCP10. The present work aimed to evaluate the thermoresistant properties of BCP against high temperature stress using the plasmid pBCP10. When the S. pombe cells were grown to the early exponential phase and shifted from $30^{\circ}C$ to $37^{\circ}C$ or $42^{\circ}C$, the S. pombe cells harboring pBCP10 grew significantly more at both $37^{\circ}C$ and $42^{\circ}C$ than the vector control cells. After 6 h of the shifting to higher incubation temperatures, they contained the lower reactive oxygen species (ROS) and nitrite content, an index of nitric oxide (NO), than the vector control cells. After the temperature shifts, total glutathione (GSH) content and total superoxide dismutase (SOD) activities were much higher in the S. pombe cells harboring pBCP10 than in the corresponding vector control cells. Taken together, the S. pombe BCP plays a thermoresistant role which might be based upon its ability both to down-regulate ROS and NO levels and to up-regulate antioxidant components, such as total GSH and SOD, and subsequently to maintain thermal stability.

Anti-effects of Photodynamic Therapy in Peroxiredoxin IV-induced AMC-HN3 Cell Lines

  • Ahn, Jin-Chul;Kang, Jung-Wook;Kim, Dae-Sik;Hong, Seong-No
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.263-267
    • /
    • 2008
  • Photodynamic therapy (PDT) is a treatment utilizing the generation of singlet oxygen and other reactive oxygen species (ROS), which selectively accumulate in target cells. Peroxiredoxin (prx) plays an important role in eliminating peroxides generated during metabolism. Prx exert protective antioxidant role in cells though peroxidase activity. The aim of present work is to investigate the cytotoxicity of photofrin-mediated PDT in prx IV-transfectant AMC-HN3 cell lines. We confirmed that PDT has an effect on ROS generation in prx IV-induced cell lines. Treatment of PDT in prx IV-HN3 cell lines inhibits cytotoxic effects. Prx IV-induced HN3 cell lines resists in cell death during PDT. Also, prx IV-HN3 cell lines treated PDT inhibited ROS generation in contrast with vector control. We indicated that prx IV-induced AMC-HN3 cell lines have a function as inhibitors during PDT.

  • PDF

The 3-[3α(2α-Hydroxy)pinane]-4,5-(pinan)-1,3-oxazolidine Synthesis, Structure and Properties

  • Bialek, Magdalena;Trzesowska, Agata;Kruszynski, Rafal
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.89-94
    • /
    • 2007
  • The new pinane derivative containing unique multifused ring system was synthesized. The crystal, molecular and electronic structure of the title compound has been determined. Both pinane ring systems have the same conformation. The five-membered oxazolidine ring exists in twisted chair conformation. The structure is expanded through O-H…O hydrogen bond to semiinfinite hydrogen-bonded chain. The bond lengths and angles in the optimised structure are similar to the experimental ones. The CH3 and CH2 groups (except this of oxazolidine ring) are negatively charged whereas the CH groups are positively charged. The largest negative potential is on the oxygen atoms. The C-N natural bond orbitals are polarised towards the nitrogen atom (ca. 61% at N) whereas the C-O bond orbitals are polarised towards the oxygen atom (ca. 67% at O). It is consistent with the charges on the nitrogen and oxygen atom of oxazolidine ring and the direction of the dipole moment vector (3.08 Debye).

Scavenging Reactive Oxygen Species by Rice Dehydroascorbate Reductase Alleviates Oxidative Stresses in Escherichia coli

  • Shin, Sun-Young;Kim, Il-Sup;Kim, Yul-Ho;Park, Hyang-Mi;Lee, Jang-Yong;Kang, Hong-Gyu;Yoon, Ho-Sung
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.616-620
    • /
    • 2008
  • Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.