Browse > Article

Scavenging Reactive Oxygen Species by Rice Dehydroascorbate Reductase Alleviates Oxidative Stresses in Escherichia coli  

Shin, Sun-Young (Department of Biology, Kyungpook National University)
Kim, Il-Sup (Department of Biology, Kyungpook National University)
Kim, Yul-Ho (National Institute of Crop Science, Rural Development Administration)
Park, Hyang-Mi (National Institute of Crop Science, Rural Development Administration)
Lee, Jang-Yong (National Institute of Crop Science, Rural Development Administration)
Kang, Hong-Gyu (Subtropical Horticulture Research Institute, Cheju National University)
Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
Abstract
Maintaining redox balance is one of the crucial requirements for a cell to endure stress from the outside. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) plays an important role in the ascorbate-glutathione cycle; one of the major ROS scavenging systems in most known biological systems. A cDNA clone of the DHAR gene from Oryza sativa (OsDHAR) was isolated and overexpressed in Escherichia coli BL21 (DE3) strain from the pET-28a(+) expression vector. The OsDHAR transformed E. coli cells showed significantly higher DHAR activity and a lower level of ROS than the E. coli cells transformed by an empty pET-28a(+) vector. Also, the DHAR-overexpressing E. coli strain was more tolerant to oxidant- and heavy metal-mediated stress conditions than the control E. coli strain. The results suggest that the overexpressed rice DHAR gene effectively functions in a prokaryotic system and provide protection to various oxidative stresses.
Keywords
antioxidant; DHAR; Oryza sativa; oxidative stress; ROS;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bhattacharya, J., GhoshDastidar, K., Chatterjee, A., Majee, M., and Majumder, A.L. (2004). Synechocystis Fe superoxide dismutase gene confers oxidative stress tolerance to Escherichia coli. Biochem. Biophys. Res. Commun. 316, 540-544   DOI   ScienceOn
2 Del Bello, B., Maellaro, E., Sugherini, L., Santucci, A., Comporti, M., and Casini, A.F. (1994). Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3 alpha-hydroxysteroid dehydrogenase. Biochem. J. 304, 385-390   DOI
3 Hossain, M.A., and Asada, K. (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol. 25, 85-92
4 Kwon, S.Y., Choi, S.M., Ahn, Y.O., Lee, H.S., Lee, H.B., Park, Y.M., and Kwak, S.S. (2003). Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J. Plant Physiol. 160,347-353   DOI   ScienceOn
5 Zadzinski, R., Fortuniak, A, Bartosz, G., Bilinski, T., and Grey, M. (1998). Menadione toxicity in Saccharomyces cerevisiee cells: activation by conjugation with glutathione. Biochem. Mol. BioI. Int. 44, 747-759
6 Lee, Y.P., Kim, S.H., Bang, J'w., Lee, H.S., Kwak, S.S., and Kwon, S.Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep. 26, 591-598   DOI
7 Balzan, R., Agius, D.R., and Bannister, W.H. (1999). Cloned prokaryotic iron superoxide dismutase protects yeast cells against oxidative stress depending on mitochondrial location. Biochem Biophys. Res. Commun. 256, 63-67   DOI   ScienceOn
8 Holland, D., Faltin, Z., Perl, A., Ben-Hayyim, G., and Eshdat, Y. (1994). A novel plant glutathione peroxidase-like protein provides tolerance to oxygen radicals generated by paraquat in Escherichia coli. FEBS Lett. 337, 52-55   DOI   ScienceOn
9 Urano, J., Nakagawa, T., Maki, Y., Masumura, T., Tanaka, K., Murata, N., and Ushimaru, T. (2000). Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett. 466, 107-111   DOI   ScienceOn
10 Pukacka, S., and Ratajczak, E. (2006). Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J. Plant Physiol. 163,1259-1266   DOI   ScienceOn
11 Halliwell, B., and Gutteridge, J.M.C. (1989). Free Radicals in Biology and Medicine (Oxford; Clarendon Press)
12 Chen, Z., Young, TE., Ling, J., Chang, S.C., and Gallie, D.R. (2003). Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc. Natl. Acad. Sci. USA 100,3525-3530
13 Schmuck, E.M., Board, P.G., Whitbread, AK., Tetlow, N., Cavanaugh, JA, Blackburn, AC., and Masoumi, A (2005). Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenet. Genomics 15,493-501   DOI
14 Woft, S.P. (1994). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for the measurement of hydroperoxide. Meth. Enzymol. 223, 182-189
15 Dipierro, S., and Borraccino, G. (1991). Dehydroascorbate reductase from potato tubers. Phytochemistry 30, 427-429   DOI   ScienceOn
16 Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Morishima, I., Shibahara, T., Inanaga, S., and Tanaka, K. (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Acta Physiol. Plant. 127,57-65   DOI   ScienceOn
17 Kato, Y., Urano, J., Maki, Y., and Ushimaru, T. (1997). Purification and characterization of dehydroascorbate reductase from rice. Plant Cell Physiol. 38, 173-178   DOI   ScienceOn
18 Ishikawa, 1., Casini, A.F., and Nishikimi, M. (1998). Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J. BioI. Chem. 273, 28708-28712   DOI
19 Li, M., Huang, W., Yang, Q., Liu, X., and Wu, Q. (2005). Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli. Protein Expr. Purif. 42, 85-91   DOI   ScienceOn
20 Touati, D. (1988). Molecular genetics of superoxide dismutases. Free Radic. BioI. Med. 5, 393-402   DOI   ScienceOn
21 Martelli, A, and Moulis, J.M. (2004). Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. J.lnorg. Biochem. 98, 1413-1420   DOI   ScienceOn
22 Nakano, Y., and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880
23 Carman, G.M., and Han, G.S. (2007). Regulation of phospholipid synthesis in Saccharomyces cerevisiee by zinc depletion. Biochim. Biophys. Acta 1771, 322-330   DOI   ScienceOn
24 Harlow, E., and Lane, D. (1988). Antibodies: A Laboratory Manual. (New York; USA, Cold Spring Harbor Laboratory Press)
25 Yoshida, S., Tamaoki, M., Shikano, T., Nakajima, N., Ogawa, D., loki, M., Aono, M., Kubo, A, Kamada, H., and Inoue, Y. (2006). Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol. 47, 304-308   DOI   ScienceOn
26 Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (New York, USA; Cold Spring Harbor Laboratory Press)
27 Ushimaru, T., Nakagawa, T., Fujioka, Y., Daicho, K., Naito, M., Yamauchi, Y., Nonaka, H., Amako, K., Yamawaki, K., and Murata, N. (2006). Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J. Plant Physiol. 163,1179-1184   DOI   ScienceOn