Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.11.813

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters  

Park, Tae Chang (Department of Chemical Engineering, Hanyang University)
Kim, Beom Seok (Department of Chemical Engineering, Hanyang University)
Kim, Tae Young (Department of Chemical Engineering, Hanyang University)
Jin, Il Bong (Department of Chemical Engineering, Hanyang University)
Yeo, Yeong Koo (Department of Chemical Engineering, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.11, 2018 , pp. 813-821 More about this Journal
Abstract
The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.
Keywords
steelmaking process; artificial neural network; least squares support vector machine; endpoint temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Han and C. Liu, Appl. Soft. Comput. 19, 430 (2014).   DOI
2 M. Han and Y. Zhao, Expert. Syst. Appl. 38, 14786 (2011).   DOI
3 A. M. F. Fileti, T. A. Pacianotto, and A. P. Cunha, Eng. Appl. Artif. Intell. 19, 9 (2006).   DOI
4 F. He, D. He, A. Xu, H. Wang, and N. Tian, J. Iron. Steel. Res. 21, 181 (2014).   DOI
5 T. Jun, W. Xin, C. Tianyou, and X. Shuming, IFAC Proc. 35, 439 (2002).
6 H. Wang, A. Xu, L. Al, and N. Tian, J. Iron. Steel. Res. 19, 11 (2012).
7 I. J. Cox, R. W. Lewis, R. S. Rausing, H. Laszczewski, and G. Berni, J. Mater. Process. Technol. 120, 310 (2002).   DOI
8 L. Xu, W. Li, M. Zhang, S. Xu, and J. Li, Optik 122, 594 (2011).   DOI
9 D. Laha, Y. Ren, and P. N. Suganthan, Expert. Syst. Appl. 42, 4687 (2015).   DOI
10 X. Wang, M. Han, and J. Wang, Eng. Appl. Artif. Intell. 23, 1012 (2010).   DOI
11 X. Tang, L. Zhuang, and C. Jiang, Expert. Syst. Appl. 36, 11853 (2009).   DOI
12 Q. Zhu, A. K. Qin, P. N. Suganthan, and G. Huang, Pattern. Recogn. 38, 1759 (2005).   DOI
13 G. Huang, Q. Zhu, and C. Siew, Neurocomputing 70, 489 (2006).   DOI
14 M. Han and X. Huang, IFAC Proc. 41, 11007 (2008).   DOI
15 C. Kubat, H. Taskin, R. Artir, and A. Yilmaz, Rob. Auton. Syst. 49, 193 (2004).   DOI
16 M. Han and X. Wang, IFAC Proc. 44, 3575 (2011).   DOI
17 M. Han and Z. Cao, Neurocomputing 149, 1245 (2015).   DOI
18 M. Han, Y. Li, and Z. Cao, Neurocomputing 123, 415 (2014).   DOI
19 S. H. Lee, J. K. Yoo, J. G. Son, and Y. H. Baek, Unit Processes of Chemical Metallurgy, pp.148-153, CMG Corp., Korea (2008).
20 S. H. Woo, C. O. Jeon, Y. S. Yun, H. Choi, C. S. Lee, and D. S. Lee, J. Hazard. Mater. 161, 538 (2009).   DOI
21 H. J. Park, J. Korean. Data. Inf. Sci. Soc. 20, 879 (2009).
22 H. Y. Park and G. Y. Lee, Pattern Recognition, p.236, Ehan, Korea (2011).
23 Y. H. Kim, Artificial Intelligence 2nd ed., pp.222-224, Hanbit, Korea (2015).
24 S. Raschka, Machine Learning, http://sebastianraschka.com (2017).
25 P. Samui and D. P. Kothari, Sci. Iran. 18, 53 (2011).   DOI