• Title/Summary/Keyword: oxygen inhibition

Search Result 711, Processing Time 0.032 seconds

A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

  • Choi, Sunga;Park, Myoung Soo;Lee, Yu Ran;Lee, Young Chul;Kim, Tae Woo;Do, Seon-Gil;Kim, Dong Seon;Jeon, Byeong Hwa
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-${\alpha}$)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 ${\mu}g/ml$ to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-${\alpha}$-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-${\alpha}$-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-${\alpha}$-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis.

Hepatocyte protection and antioxidant effect of Citri Unshius Pericarpium against cadmium-induced oxidative stress (카드뮴으로 유발된 산화 스트레스에 대한 진피의 간세포 보호 및 항산화 효과)

  • Noh, Gyu Pyo;Byun, Sung Hui;Jung, Dae Hwa;Lee, Jong Rok;Park, Sook Jahr;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.4
    • /
    • pp.327-337
    • /
    • 2020
  • Objective : Citri Unshius Pericarpium is the dried peel of mature fruit of Citrus unshiu Markovich and has been used to treat indigestion, vomiting, and removal of phlegm. This study investigated the hepatoprotective and antioxidant effect of CEE (Ethanol extract of Citri Unshius Pericarpium) in cadmium (CdCl2)-treated HepG2 cells. Methods : Component analysis of Citri Unshius Pericarpium was analyzed by UPLC with C18 column. Cell viability was determined by MTT assay. The enzyme activity of superoxide dismutase (SOD) and the level of reactive oxygen species (ROS) and reduced glutathione (GSH) were analyzed using commercially available kits. Results : Cadmium caused severe HepG2 cell death. Cadmium also increased ROS production, consistent with depletion of GSH and inhibition of the SOD enzyme. However, CEE treatment reduced cell death and relieved oxidative stress caused by cadmium toxicity. CEE lowered ROS levels and improved depletion of GSH levels. CEE also enhanced the enzymatic activity of SOD. In component analysis, hesperidin was the most abundant of the five marker compounds (Narigenin, Narigin, Narirutin, Hesperidin and Hesperidin), which assumes that hesperidin partially contributed to the antioxidant activity of CEE. Conclusion : These results suggested that CEE could be a potential substance to solve heavy metal-related health problems. In particular, inhibition of oxidative stress by CEE can be a way to treat liver damage caused by cadmium.

Screening Method for Photosynthetic Electron Transport Inhibitors Using Photoautotrophic Cultured Cells (광학적 자가영양 배양세포를 이용한 광합성 전자전달억제자의 간이검정방법)

  • 정형진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.245-252
    • /
    • 1993
  • To investigate a simple and rapid screening method for photosynthetic inhibitory herbicides, responses of tobacco(Nicotiana tabacum L.) and liverwort(Marchantia polymorpha L.) PA(photoautotrophic) cells to various commercial herbicides with different modes of action and leaf extracts of four weed species were compared. PET (photosynthetic electron transport) inhibitory type of herbicides has greater inhibitory effect in liverwort photoautotrophic cells than the photomixotrophic and heterotrophic cultured cells. Similary, PET inhibitory type of herbicides inhibited the oxygen evolution more in liverwort PA cells than the other type of herbicides. Based on oxygen evolution, 60% inhibition was observed by the 10% aqueous extracts of Polygonum hydropiper, while there was 100% inhibition by the 10% methanol extracts of Polygonum hydropiper. This assay gave well correlated results to the Hill reaction data using isolated thylakoids. Thus liverwort photoautotrophic cells might be suitable materials for rapid screening method for photosynthetic inhibitory herbicides.

  • PDF

YS 49, a Synthetic Isoquinoline Alkaloid, Protects Sheep Pulmonary Artery Endothelial Cells from tert-butylhydroperoxide-mediated Cytotoxicity

  • Chong, Won-Seog;Kang, Sun-Young;Kang, Young-Jin;Park, Min-Kyu;Lee, Young-Soo;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;ChoiYun, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.283-289
    • /
    • 2005
  • Endothelium, particularly pulmonary endothelium, is predisposed to injury by reactive oxygen species (ROS) and their derivatives. Heme oxygenase (HO) has been demonstrated to provide cytoprotective effects in models of oxidant-induced cellular and tissue injuries. In the present study, we investigated the effects of YS 49 against oxidant [tert-butylhydroperoxide (TBH)]-induced injury using cultured sheep pulmonary artery endothelial cells (SPAECs). The viability of SPAECs was determined by quantifying reduction of a fluorogenic indicator Alamar blue. We found that TBH decreased cell viability in a timeand concentration-dependent manner. YS 49 concentration- and time-dependently increased HO-1 induction on SPAECs. As expected, YS 49 significantly decreased the TBH-induced cellular injury. In the presence of zinc protophorphyrin, HO-1 inhibitor, effect of YS 49 was significantly inhibited, indicating that HO-1 plays a protective role for YS 49. Furthermore, YS 49 showed free radical scavenging activity as evidenced by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and inhibition of lipid peroxidation. However, YS 49 did not inhibit apoptosis induced by lipopolysaccharide (LPS) in SPAECs. Taken together, HO-1 induction along with strong antioxidant action of YS 49 may be responsible for inhibition of TBH-induced injury in SPAECs.

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1

  • Kim, Jung-Eun;Sung, Jin-Young;Woo, Chang-Hoon;Kang, Young-Jin;Lee, Kwang-Youn;Kim, Hee-Sun;Kwun, Woo-Hyung;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.

Methanol Extract of Cassia mimosoides var. nomame Attenuates Myocardial Injury by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Lim, Sun-Ha;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Interruption of blood flow through coronary arteries and its subsequent restoration triggers the generation of a burst of reactive oxygen species (ROS), leading to myocardial cell death. In this study, we determined whether a methanol extract of Cassia mimosoides var. nomame Makino could prevent myocardial ischemia-reperfusion injury. When radical scavenging activity of the extract was measured in vitro using its ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radical quenching ability, the extract showed an activity slightly lower than that of ascorbic acid. Three days after oral administration of the extract (400 mg/kg/day) to rats, myocardial ischemia/reperfusion injury was generated by 30 min of ligation of the left anterior descending coronary artery (LAD), followed by 3 hr reperfusion. Compared with the vehicle-treated group, administration of the extract significantly reduced infarct size (IS) (ratio of infarct area to area at risk) in the extract-treated group by 28.3%. Reduction in the cellular injury was mediated by attenuation of Bax/Bcl-2 ratio by 33.3%, inhibition of caspase-3 activation from procaspase-3 by 40%, and subsequent reduction in the number of apoptotic cells by 66.3%. These results suggest that the extract attenuates myocardial injury in a rat model of ischemia-reperfusion by scavenging ROS, including free radicals, and consequently blocking apoptotic cascades. Therefore, intake of Cassia mimosoides var. nomame Makino might be beneficial for preventing ischemic myocardial injury.

Observation of the silicon acrylate effect on the photo-polymerization reaction using micro raman spectroscopic technique (마이크로 라만을 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향 관찰)

  • Oh, HyangRim;Hong, Jin-Who;Yu, Jeong-A
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • The effect of the silicon acrylate as a reactive additive on the UV-curing photopolymerization reaction was studied by micro raman technique. For the study, acrylate systems and Darocur 1173 were used as oligomer and monomers, and a photo initiator, respectively. The content of silicon acrylate was within the range of 0-3 wt%. The extent of photo-polymerization reaction as a function of depth from the air interface was obtained from the conversion ratio of acrylate double bond calculated from the intensities of measured bands at $1410cm^{-1}$ and at $1635cm^{-1}$. Micro raman spectroscopic technique can be an useful tool for the investigation of the factors, which can affect the reaction progress, such as oxygen inhibition, composition of the formulations, depth, etc.

Improving effect of Artemisiae Capillaris Herba extract in reflux esophagitis rats (인진호 추출물의 급성역류성 식도염 유발 흰쥐에 대한 개선 효과)

  • Lee, Joo Young;Seo, Bu Il;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.37-44
    • /
    • 2016
  • Objective : This study aimed to evaluate the protective effect of Artemisiae Capillaris Herba (AC) in reflux esophagitis (RE) rats. Methods : The AC was measured antioxidant activity through in vitro experiments, such as total polyphenol and flavonoid contents, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Base on the results, we had conducted in vivo experiments. Rats were divided normal, control, AC treatment 50 mg/kg BW (AC50), and AC treatment 100 mg/kg BW (AC100) groups. AC were orally administered 2 h before the induction of RE. RE was induced by tie the pylorus and the transitional junction between the forestomach and the corpus in Sprague-Dawley rats. The rats were sacrificed 5 h after the surgery. We analyzed the expression of inflammatory related markers by western blot and observed the production of reactive oxygen species (ROS) and hematoxylin-eosin staining, Results : The $IC_{50}$ of AC for DPPH and ABTS were showed 12.60 and $33.32{\mu}g/m{\ell}$ respectively. In the RE rat, AC decreased inflammatory related markers, such as phosphorylated inhibitor of ${\kappa}B{\alpha}$, nuclear factor-kappa B, cyclooxygenase-2, inducible nitric oxide synthase, and tumor necrosis factor alpha. Also, AC reduced the increased reactive oxygen species in serum. The anti-inflammatory effect of AC appeared to be partially mediated through the inhibition of ROS. Also, AC markedly ameliorated esophageal mucosa damage via the inhibition of protein expression related to inflammation. Conclusions : Therefore, these results suggest that AC would be used as a therapeutic material in protection and/or treatment for reflux esophagitis.

Antioxidant and Anti-inflammatory Activities of the Halophyte Cyrtomium falcatum (염생식물 도깨비고비의 항산화 및 항염증 효과)

  • Kim, Hyunmo;Kim, Hojun;Kong, Chang-Suk;Lee, Bong Ho;Sim, Hyun-Bo;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In the present study, the halophyte C. falcatum extract and its solvent fractions (n-hexane, 85% aqueous methanol, n-butanol, and water) were evaluated for antioxidant and anti-inflammatory activities. Antioxidative ability was measured by DPPH radical, intracellular reactive oxygen species (ROS) and peroxynitrite scavenging, DNA oxidation inhibition, and ferric reducing antioxidant power (FRAP). For DPPH radical and peroxynitrite scavenging, DNA oxidation inhibition, and FRAP, 85% aq.MeOH and n-BuOH fractions showed significant scavenging activity. For production of intracellular ROS in HT-1080 cells, 85% aq.MeOH fraction showed the highest scavenging activity. In addition, anti-inflammatory activity was also assessed by measuring the inhibitory effect against mRNA expression of pro-inflammatory factors (NO, IL-1β, IL-6 and COX-2) in LPS-stimulated Raw 264.7 macrophages. For NO production, crude extract exhibited a strong inhibitory effect at a concentration of 100 ㎍/ml. For mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, and COX-2), n-BuOH greatly suppressed expression levels of IL-1β and IL-6 at 100 ㎍/ml concentration while 85% aq. MeOH fraction significantly inhibited that of COX-2 even at 100 ㎍/ml. These results suggest that C. falcatum may be used as a potential source for the development of a natural antioxidant or anti-inflammatory agent.

Sertad1 Induces Neurological Injury after Ischemic Stroke via the CDK4/p-Rb Pathway

  • Li, Jianxiong;Li, Bin;Bu, Yujie;Zhang, Hailin;Guo, Jia;Hu, Jianping;Zhang, Yanfang
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.216-230
    • /
    • 2022
  • SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer's disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.