DOI QR코드

DOI QR Code

Sertad1 Induces Neurological Injury after Ischemic Stroke via the CDK4/p-Rb Pathway

  • Li, Jianxiong (Department of Neurology, Lanzhou University Second Hospital) ;
  • Li, Bin (Department of Neurology, Lanzhou University Second Hospital) ;
  • Bu, Yujie (Department of Neurology, Lanzhou University Second Hospital) ;
  • Zhang, Hailin (Neurosurgery, Lanzhou University Second Hospital) ;
  • Guo, Jia (Department of Neurology, Lanzhou University Second Hospital) ;
  • Hu, Jianping (Department of Neurology, Lanzhou University Second Hospital) ;
  • Zhang, Yanfang (Department of Neurology, Lanzhou University Second Hospital)
  • 투고 : 2021.03.25
  • 심사 : 2021.12.09
  • 발행 : 2022.04.30

초록

SERTA domain-containing protein 1 (Sertad1) is upregulated in the models of DNA damage and Alzheimer's disease, contributing to neuronal death. However, the role and mechanism of Sertad1 in ischemic/hypoxic neurological injury remain unclear. In the present study, our results showed that the expression of Sertad1 was upregulated in a mouse middle cerebral artery occlusion and reperfusion model and in HT22 cells after oxygen-glucose deprivation/reoxygenation (OGD/R). Sertad1 knockdown significantly ameliorated ischemia-induced brain infarct volume, neurological deficits and neuronal apoptosis. In addition, it significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Sertad1 knockdown significantly inhibited the ischemic/hypoxic-induced expression of p-Rb, B-Myb, and Bim in vivo and in vitro. However, Sertad1 overexpression significantly exacerbated the OGD/R-induced inhibition of cell viability and apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. In further studies, we demonstrated that Sertad1 directly binds to CDK4 and the CDK4 inhibitor ON123300 restores the effects of Sertad1 overexpression on OGD/R-induced apoptotic cell death and p-Rb, B-Myb, and Bim expression in HT22 cells. These results suggested that Sertad1 contributed to ischemic/hypoxic neurological injury by activating the CDK4/p-Rb pathway.

키워드

과제정보

This study was supported by grants from the Science and Technology Program of Chengguan District, Lanzhou City (grant No. 2017SHFZ0035) and the training program of the Cuiying graduate tutor.

참고문헌

  1. Adams, H.P., Jr. (2001). Treatment of acute ischemic stroke: selecting the right treatment for the right patient. Eur. Neurol. 45, 61-66. https://doi.org/10.1159/000052097
  2. Auriel, E. and Bornstein, N.M. (2010). Neuroprotection in acute ischemic stroke--current status. J. Cell. Mol. Med. 14, 2200-2202. https://doi.org/10.1111/j.1582-4934.2010.01135.x
  3. Biswas, S.C., Zhang, Y., Iyirhiaro, G., Willett, R.T., Rodriguez Gonzalez, Y., Cregan, S.P., Slack, R.S., Park, D.S., and Greene, L.A. (2010). Sertad1 plays an essential role in developmental and pathological neuron death. J. Neurosci. 30, 3973-3982. https://doi.org/10.1523/JNEUROSCI.6421-09.2010
  4. Chavez, J.C. and LaManna, J.C. (2002). Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22, 8922-8931. https://doi.org/10.1523/jneurosci.22-20-08922.2002
  5. Chen, T., Liu, W., Chao, X., Qu, Y., Zhang, L., Luo, P., Xie, K., Huo, J., and Fei, Z. (2011). Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway. Neuroscience 183, 203-211. https://doi.org/10.1016/j.neuroscience.2011.03.038
  6. Ding, C., He, J., Zhao, J., Li, J., Chen, J., Liao, W., Zeng, Y., Zhong, J., Wei, C., Zhang, L., et al. (2018). β-catenin regulates IRF3-mediated innate immune signalling in colorectal cancer. Cell Prolif. 51, e12464. https://doi.org/10.1111/cpr.12464
  7. Greene, L.A., Liu, D.X., Troy, C.M., and Biswas, S.C. (2007). Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim. Biophys. Acta 1772, 392-401. https://doi.org/10.1016/j.bbadis.2006.12.003
  8. Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Davalos, A., Guidetti, D., Larrue, V., Lees, K.R., Medeghri, Z., Machnig, T., et al. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359, 1317-1329. https://doi.org/10.1056/NEJMoa0804656
  9. Hu, B., Hu, H., Yin, M., Sun, Z., Chen, X., Li, Y., Sun, Z., Liu, C., Li, L., and Qiu, Y. (2019). Sertad1 promotes prostate cancer progression through binding androgen receptor ligand binding domain. Int. J. Cancer 144, 558-568. https://doi.org/10.1002/ijc.31877
  10. Iyirhiaro, G.O., Im, D.S., Boonying, W., Callaghan, S.M., During, M.J., Slack, R.S., and Park, D.S. (2017). Cdc25A is a critical mediator of ischemic neuronal death in vitro and in vivo. J. Neurosci. 37, 6729-6740. https://doi.org/10.1523/JNEUROSCI.3017-16.2017
  11. Jin, J., Sun, H., Liu, D., Wang, H., Liu, Q., Chen, H., Zhong, D., and Li, G. (2019). LRG1 promotes apoptosis and autophagy through the TGFβ-smad1/5 signaling pathway to exacerbate ischemia/reperfusion injury. Neuroscience 413, 123-134. https://doi.org/10.1016/j.neuroscience.2019.06.008
  12. Kim, J.E. and Kang, T.C. (2018). Suppression of nucleocytoplasmic p27Kip1 export attenuates CDK4-mediated neuronal death induced by status epilepticus. Neurosci. Res. 132, 46-52. https://doi.org/10.1016/j.neures.2017.10.001
  13. Kuo, P.C., Scofield, B.A., Yu, I.C., Chang, F.L., Ganea, D., and Yen, J.H. (2016). Interferon-β modulates inflammatory response in cerebral ischemia. J. Am. Heart Assoc. 5, e002610. https://doi.org/10.1161/JAHA.115.002610
  14. Kuriakose, D. and Xiao, Z. (2020). Pathophysiology and treatment of stroke: present status and future perspectives. Int. J. Mol. Sci. 21, 7609. https://doi.org/10.3390/ijms21207609
  15. Lai, I.L., Wang, S.Y., Yao, Y.L., and Yang, W.M. (2007). Transcriptional and subcellular regulation of the TRIP-Br family. Gene 388, 102-109. https://doi.org/10.1016/j.gene.2006.10.008
  16. Li, C., Jung, S., Yang, Y., Kim, K.I., Lim, J.S., Cheon, C.I., and Lee, M.S. (2016). Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines. Int. J. Oncol. 48, 2639-2646. https://doi.org/10.3892/ijo.2016.3454
  17. Li, J., Muscarella, P., Joo, S.H., Knobloch, T.J., Melvin, W.S., Weghorst, C.M., and Tsai, M.D. (2005). Dissection of CDK4-binding and transactivation activities of p34(SEI-1) and comparison between functions of p34(SEI-1) and p16(INK4A). Biochemistry 44, 13246-13256. https://doi.org/10.1021/bi0504658
  18. Liu, D.X. and Greene, L.A. (2001). Regulation of neuronal survival and death by E2F-dependent gene repression and derepression. Neuron 32, 425-438. https://doi.org/10.1016/S0896-6273(01)00495-0
  19. Liu, M., Xu, Z., Wang, L., Zhang, L., Liu, Y., Cao, J., Fu, Q., Liu, Y., Li, H., Lou, J., et al. (2020). Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation 17, 270. https://doi.org/10.1186/s12974-020-01946-7
  20. Liu, S.B., Zhang, N., Guo, Y.Y., Zhao, R., Shi, T.Y., Feng, S.F., Wang, S.Q., Yang, Q., Li, X.Q., Wu, Y.M., et al. (2012). G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. J. Neurosci. 32, 4887-4900. https://doi.org/10.1523/JNEUROSCI.5828-11.2012
  21. Longa, E.Z., Weinstein, P.R., Carlson, S., and Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. https://doi.org/10.1161/01.STR.20.1.84
  22. Nguyen, J.Q. and Irby, R.B. (2017). TRIM21 is a novel regulator of Par-4 in colon and pancreatic cancer cells. Cancer Biol. Ther. 18, 16-25. https://doi.org/10.1080/15384047.2016.1252880
  23. Putcha, G.V., Moulder, K.L., Golden, J.P., Bouillet, P., Adams, J.A., Strasser, A., and Johnson, E.M. (2001). Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29, 615-628. https://doi.org/10.1016/S0896-6273(01)00238-0
  24. Rao, H.V., Thirumangalakudi, L., Desmond, P., and Grammas, P. (2007). Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J. Neurochem. 101, 498-505. https://doi.org/10.1111/j.1471-4159.2006.04389.x
  25. Rashidian, J., Iyirhiaro, G., Aleyasin, H., Rios, M., Vincent, I., Callaghan, S., Bland, RJ., Slack, R.S., During, M.J., and Park, D.S. (2005). Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 14080-14085. https://doi.org/10.1073/pnas.0500099102
  26. Russo, T., Felzani, G., and Marini, C. (2011). Stroke in the very old: a systematic review of studies on incidence, outcome, and resource use. J. Aging Res. 2011, 108785. https://doi.org/10.4061/2011/108785
  27. Sakamoto, K., Ohki, K., Saitov, M., Nakahara, T., and Ishii, K. (2011). Small molecule cyclin-dependent kinase inhibitors protect against neuronal cell death in the ischemic-reperfused rat retina. J. Ocul. Pharmacol. Ther. 27, 419-425. https://doi.org/10.1089/jop.2010.0141
  28. Sugimoto, M., Nakamura, T., Ohtani, N., Hampson, L., Hampson, I.N., Shimamoto, A., Furuichi, Y., Okumura, K., Niwa, S., Taya, Y., et al. (1999). Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev. 13, 3027-3033. https://doi.org/10.1101/gad.13.22.3027
  29. Wang, L., Lu, Y., Guan, H., Jiang, D., Guan, Y., Zhang, X., Nakano, H., Zhou, Y., Zhang, Y., Yang, L., et al. (2013). Tumor necrosis factor receptor-associated factor 5 is an essential mediator of ischemic brain infarction. J. Neurochem. 126, 400-414. https://doi.org/10.1111/jnc.12207
  30. Wei, N., Xiao, L., Xue, R., Zhang, D., Zhou, J., Ren, H., Guo, S., and Xu, J. (2016). MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol. Neurobiol. 53, 6809-6817. https://doi.org/10.1007/s12035-015-9605-4
  31. Wu, R., Li, X., Xu, P., Huang, L., Cheng, J., Huang, X., Jiang, J., Wu, L.J., and Tang, Y. (2017). TREM2 protects against cerebral ischemia/reperfusion injury. Mol. Brain 10, 20. https://doi.org/10.1186/s13041-017-0296-9
  32. Xu, H., Qin, W., Hu, X., Mu, S., Zhu, J., Lu, W., and Luo, Y. (2018). Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-κB signaling pathway in cerebral ischemia/reperfusion rats. J. Neuroinflammation 15, 83. https://doi.org/10.1186/s12974-018-1117-5
  33. You, J., Liu, J., Bao, Y., Wang, L., Yu, Y., Wang, L., Wu, D., Liu, C., Wang, N., Wang, F., et al. (2017). SEI1 induces genomic instability by inhibiting DNA damage response in ovarian cancer. Cancer Lett. 385, 271-279. https://doi.org/10.1016/j.canlet.2016.09.032
  34. Zhang, Z., Qin, P., Deng, Y., Ma, Z., Guo, H., Guo, H., Hou, Y., Wang, S., Zou, W., Sun, Y., et al. (2018). The novel estrogenic receptor GPR30 alleviates ischemic injury by inhibiting TLR4-mediated microglial inflammation. J. Neuroinflammation 15, 206. https://doi.org/10.1186/s12974-018-1246-x
  35. Zhang, Z., Yan, J., Taheri, S., Liu, K.J., and Shi, H. (2014). Hypoxia-inducible factor 1 contributes to N-acetylcysteine's protection in stroke. Free Radic. Biol. Med. 68, 8-21. https://doi.org/10.1016/j.freeradbiomed.2013.11.007