• Title/Summary/Keyword: oxide scales

Search Result 89, Processing Time 0.018 seconds

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

Characterization of Oxide Scales Formed on TiAl-W-Zr Alloys (TiAl-W-Zr 합금에 생성된 고온산화막 분석)

  • Woo Sung-Wook;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.394-398
    • /
    • 2004
  • A Ti47Al1.7W-3.7Zr alloy was oxidized between $900^{\circ}C$ and $1050^{\circ}C$, and the oxide scales formed were studied. The oxide scales consisted primarily of an outer$TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed ($TiO _2$ + $Al_2$$O_3$) layer. Besides $TiO_2$ and $Al_2$$O_3$, oxidation led to the formation of some $Ti_2$AlN and TiN. Both W and Zr were preferentially segregated below the intermediate $Al_2$$O_3$-rich layer. Tungsten in the oxide scale was present as $WO_3$ and ${Ti}_{x}$$W_{1-x}$, whereas zirconium as monoclic-$ZrO_2$ and tetragonal-$ZrO_2$.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Simulation of do Performance and Gate Breakdown Characteristics of MgO/GaN MOSFETs (MgO/GaN MOSFETs의 dc 특성 및 Gate Breakdown 특성 Simulation)

  • Cho, Hyeon;Kim, Jin-Gon;Gila, B.P.;Lee, K.P.;Abernathy, C.R.;Pearton, S.J.;Ren, F.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.176-176
    • /
    • 2003
  • The effects of oxide thickness and gate length of MgO/GaN metal oxide semiconductor field effect transistors (MOSFETs) on I-V, threshold voltage and breakdown voltage characteristics were examined using a drift-diffusion model. The saturation drain current scales in an inverse logarithmic fashion with MgO thickness and is < 10$^{-3}$ A.${\mu}{\textrm}{m}$$^{-1}$ for 0.5 ${\mu}{\textrm}{m}$ gate length devices with oxide thickness > 600 $\AA$ or for all 1 ${\mu}{\textrm}{m}$ gate length MOSFETs with oxide thickness in the range of >200 $\AA$. Gate breakdown voltage is > 100 V for gate length >0.5 ${\mu}{\textrm}{m}$ and MgO thickness > 600 $\AA$. The threshold voltage scales linearly with oxide thickness and is < 2 V for oxide thickness < 800 $\AA$ and gate lengths < 0.6 ${\mu}{\textrm}{m}$. The GaN MOSFET shows excellent potential for elevated temperature, high speed applications.

  • PDF

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

A Study on Cleaning Processes for Ti/TiN Scales on Semiconductor Equipment Parts (반도체 장비 부품의 Ti/TiN 흡착물 세정 공정 연구)

  • 유정주;배규식
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.11-15
    • /
    • 2004
  • Scales, accumulated on some parts of semiconductor equipments such as sputters and CVD during the device fabrication processes, often lower the lifetime of the equipments and production yields. Thus, many equipment parts have be cleaned regularly. In this study, an attempt to establish an effective process to remove scales on the sidewall of collimators located inside the chamber of the sputter was made. The EDX analysis revealed that the scales were composed of Ti and TiN with the columnar structure. Through the trial-and-error experiments, it was found that the etching in the $HNO_3$:$H_2SO_4$:$H_2O$=4:2:4 solution for 5.5 hrs at $67^{\circ}C$, after the oxide removal in the HF solution, and the heat-treatment at $700^{\circ}C$ for 1 min., was the most effective process for the scale removal.

  • PDF

Effect of Fe on the High Temperature Oxidation of TiAl Alloys (TiAl 합금의 고온 산화에 미치는 Fe의 영향)

  • 김미현;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2000
  • To understand the effect of Fe on the oxidation behavior of TiAl alloys, TiAl-(2, 4, 6at% )Fe were oxidized at 800 and 90$0^{\circ}C$ in air. The oxidation resistance of TiAl-Fe alloys increased with increasing an iron content. The scales formed consisted of an outer $TiO_2$ layer, an intermediate $A1_2$$O_3$ layer, and an inner mixed ($TiO_2$+$A1_2$$O_3$) layer, being similar to other common TiAl alloys. But, the scales formed on TiAl-Fe alloys were generally thin compared to those formed on pure TiAl, and contained dissolved iron. Below the oxide scale, an oxygen affected zone was formed. This beneficial effects of Fe on increasing the oxidation resistance and scale adherence of TiAl alloys were attributed to the refinement of oxide grains, increased scale adherence and the enhanced alumina-forming tendency.

  • PDF

The oxidation of Fe-(21.8, 24.1, 27.2)%Al intermetallics (Fe-(21.8, 24.1, 27.2)%Al 금속간 화합물의 고온 산화)

  • 김기영;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.365-372
    • /
    • 2000
  • Pure $Fe_3$Al alloys with three different compositions of Fe-21.8%Al, Fe-24.1%Al and Fe-27.2%Al were prepared by vacuum induction melting followed by homogenization and hot forging. The long-time oxidation behavior of the prepared alloys was studied at 1073, 1273 and 1473k in air. The oxidation resistance greatly increased with an increase in Al contents. Thin and uniform oxide scales were always formed on Fe-27.2%Al, while thick and fragile oxide scales were formed on Fe-(21.8, 24.1%)Al. Internal oxidation was observed in Fe-(21.8, 24.1%)Al, when oxidized above 1273K. The major oxidation product of all the oxidized alloys was always $\alpha$-$Al_2$$O_3$.

  • PDF