• Title/Summary/Keyword: oxide particle

Search Result 732, Processing Time 0.02 seconds

Analysis of Deposited Dust Particles using SEM/EDX (SEM/EDX 분석법을 이용한 침착먼지에 대한 분석사례)

  • Ha, Eun-Ji;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • In this study, the composition and morphology of deposited dust particles with size ranging from a few to tens ㎛ were investigated using SEM/EDX (scanning electron microscopy with energy dispersive x-ray spectrometer). Then deposited dust particles were classified into 8 groups: quartz, aluminosilicates, ca-rich, Fe/Ti oxide, carbon-rich, industrial particle, Fe-rich, and biogenic particle. The sources of deposited dust were high in the order of aluminosilicates 41% > biogenic 18% > Fe-rich 11% > quartz and C-rich 8% > industrial 7% > Fe/Ti oxide 5% > Ca-rich 1%. In particular, the ratio of biogenic particles was relatively high due to influence of pollen. The ratio of carbon-rich was 11% at YM site, 10% at MD site, and 4% at MO site, and the site close to the large emission source was high.

The Evaluation of the Thick Polycrystalline HgO and PbO Films Derived by Particle Sedimentation Method for the Mammographic Application (입자침전법을 이용한 다결정 산화수은과 산화납 필름의 방사선 유방촬영 장치 적용성 평가)

  • Noh, Si-Cheol;Park, Ji-Koon;Choi, Il-Hong;Jung, Hyoung-Jin;Kang, Sang-Sik;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.429-433
    • /
    • 2014
  • In this study, the morphology and the x-ray quantum efficient of mercury oxide (HgO) and lead oxide (PbO) sensors derived by particle sedimentation method were discussed. In the pursuit of this purpose, we investigated the electrical characteristics and the x-ray quantum efficiency of various thicknesses of HgO and PbO films in mammographic x-ray energy. We have therefore developed a particle-in-binder sedimentation method of fabricating large area polycrystalline films onto transparent glass substrates coated with indium tin oxide. We are currently optimizing the growth method to improve the quantum efficiency with the ultimate goal of obtaining as quantum efficiency close to that of single crystal performance. Our future efforts will concentrate on optimization of large area film growth techniques specifically for deposition on a-Si:H flat panel readout arrays.

Hydrothermal Synthesis of Indium Tin Oxide Nanoparticles without Chlorine Contamination

  • Wang, Hai Wen;Xu, Guo Dong;Zhang, Jian Rong;Yin, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1999-2003
    • /
    • 2014
  • Indium tin oxide ($In_2Sn_{1-x}O_{5-y}$) nanoparticles were synthesized by hydrothermal method from stable indium tin acetylacetone complexes and postannealing at $600^{\circ}C$. The absence of chlorine ions shortened the synthesis process, decreased the particle agglomeration and improved the particle purity. The introduced complexing ligand acetylacetone decreased the obtained nanoparticle size. The improved powder properties accelerated the sintering of the $In_2Sn_{1-x}O_{5-y}$ nanoparticles and reached a relative density of 96.4% when pressureless sintered at $1400^{\circ}C$.

Crystallographic and Magnetic Properties of Iron Oxide Nanoparticles for Applications in Biomedicine

  • Lee, Sang-Won;Woo, Kyoung-Ja;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.83-85
    • /
    • 2004
  • Magnetic nanoparticles have been investigated for use as biomedical purposes for several years. For biomedical applications the use of particles that present superparamagnetic behavior at room temperature is preferred [1-4]. To control the magnetic materials by magnetic field is essential locate particle to the suitable destination on feeding by injection. In order to use them properly, the particles should be nano size. However there are many difficulties in applications, because there is lack of identifications in nano magnetic properties. In our studies, structural and magnetic properties of iron oxide nanoparticles were investigated by XRD, VSM, TEM, and Mossbauer spectroscopy. At 13 K, hyperfine fields of ${\gamma}-Fe_2O_3$ were 516 kOe and 490 kOe, that of $Fe_3O_4$ were 517 kOe and 482 kOe. The saturation magnetizations were 21.42 emu/g and 39.42 emu/g. The particle size of powders is 5~19 nm.

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Effect of Particle Loading Ratio and Orifice Exit Velocity on a Particle-Laden Jet

  • Paik, Kyong-Yup;Yoon, Jung-Soo;Hwang, Jeong-Jae;Chung, Jae-Mook;Bouvet, Nicolas;Yoon, Young-Bin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.296-304
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles with water, basic experiments on a particle laden jet are necessary. The purpose of the present study is to understand the effect of particle loading ratio on the particle spray characteristics (i.e. spreading angle, distribution of particle number density, velocity profiles, and particle developing region length). Hydro-reactive Al2O3 particles with a primary particle diameter of 35~50 ${\mu}m$ are used in this experiment. An automated particle feeder was designed to supply constant particle mass flowrates. Air is used as the carrier gas. To determine the air velocity at the orifice exit, tracers (aluminum oxide, 0.5~2 ${\mu}m$ primary diameter) are also supplied by a tracer feeder. A plain orifice type injector with 3 mm diameter, and 20 mm length was adopted. Particle image velocimetry is used to measure the mean and fluctuating velocity components along the axial and radial directions.

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF

Preparation and capacitance behaviors of cobalt oxide/graphene composites

  • Park, Suk-Eun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.130-132
    • /
    • 2012
  • In this study, cobalt oxide ($Co_3O_4$)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, $400^{\circ}C$). The nanostructured $Co_3O_4$/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The $Co_3O_4$/graphene sample obtained at $200^{\circ}C$ showed the highest capacitance of 396 $Fg^{-1}$ at 5 $mVs^{-1}$. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing $Co_3O_4$/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at $200^{\circ}C$ revealed that nanoscale $Co_3O_4$ (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of $Co_3O_4$.