• Title/Summary/Keyword: oxide

Search Result 18,462, Processing Time 0.04 seconds

Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel (Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF

Development of Asymmetric Resolution System for the Production of Chiral Styrene Oxide by Microbial Epoxide Hydrolase (미생물 유래의 Epoxide Hydrolase를 이용한 Chiral Styrene Oxide 생산용 비대칭 광학분할시스템개발)

  • 이지원;윤여준;이은열
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.584-588
    • /
    • 2002
  • Asymmetric enantioselective resolution system using epoxide hydrolase activity of Aspergillus niger LK was developed and operated for the production of optically pure styrene oxide. Two-phase hollow-fiber reactor system was employed for the enhanced solubility of racemic styrene oxide in organic phase and protection of epoxide hydrolase activity in aqueous phase. For the removal of phenyl-1,2-ethandiol, the inhibitor of epoxide hydrolase, cascade hollow-fiber reactor system was also developed. Chiral (S)-styrene oxide (39 mM in dodecane) could be asymmetrically resolved with high enantiopurity (> 99% ee) using these reactor system.

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Flowable oxide CVD Process for Shallow Trench Isolation in Silicon Semiconductor

  • Chung, Sung-Woong;Ahn, Sang-Tae;Sohn, Hyun-Chul;Lee, Sang-Don
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • We have proposed a new shallow trench isolation (STI) process using flowable oxide (F-oxide) chemical vapor deposition (CVD) for DRAM application and it was successfully developed. The combination of F-oxide CVD and HDP CVD is thought to be the superior STI gap-filling process for next generation DRAM fabrication because F-oxide not only improves STI gap-filling capability, but also the reduced local stress by F-oxide in narrow trenches leads to decrease in junction leakage and gate induced drain leakage (GIDL) current. Finally, this process increased data retention time of DRAM compared to HDP STI. However, a serious failure occurred by symphonizing its structural dependency of deposited thickness with poor resistance against HF chemicals. It could be suppressed by reducing the flow time during F-oxide deposition. It was investigated collectively in terms of device yield. In conclusion, the combination of F-oxide and HDP oxide is the very promising technology for STI gap filling process of sub-100nm DRAM technology.

A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles (산화구리 나노분말을 포함하는 에틸렌글리콜 용액의 열전특성에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.276-280
    • /
    • 2010
  • In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

Formation of Amorphous Oxide Layer on the Crystalline Al-Ni-Y Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.173-176
    • /
    • 2013
  • The oxidation behavior of the crystallized $Al_{87}Ni_3Y_{10}$ alloy has been investigated with an aim to compare with that of the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The oxidation at 873 K occurs as follows: (1) growth of an amorphous aluminum-yttrium oxide layer (~10 nm) after heating up to 873 K; and (2) formation of $YAlO_3$ crystalline oxide (~220 nm) after annealing for 30 hours at 873 K. Such an overall oxidation step indicates that the oxidation behavior in the crystallized $Al_{87}Ni_3Y_{10}$ alloy occurs in the same way as in the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The simultaneous presence of aluminum and yttrium in the oxide layer significantly enhances the thermal stability of the amorphous structure in the oxide phase. Since the structure of aluminum-yttrium oxide is dense due to the large difference in ionic radius between aluminum and yttrium ions, the diffusion of oxygen ion through the amorphous oxide layer is limited thus stabilizing the amorphous structure of the oxide phase.

Chemical Structure Analysis on the ONO Superthin Film by Second Derivative AES Spectra (2차 미분 AES 스펙트럼에 의한 ONO 초박막의 화학구조 분석)

  • 이상은;윤성필;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.79-82
    • /
    • 1998
  • Film characteristics of thin ONO dielectric layers for MONOS(metal-oxide-nitride-oxide-semiconductor) EEPRM was investigated by AES and AFM. Second derivative spectra of AES Si LVV overlapping peak provided useful information for chemical state analysis of superthin film. The ONO films with dimension of tunneling oxide 24${\AA}$, nitride 33${\AA}$, and blocking oxide 40${\AA}$ were fabricated. During deposition of the LPCVD nitride films on tunneling oxide, this thin oxide was nitrized. When the blocking oxide were deposited on the nitride film, the oxygen not only oxidized the nitride surface, but diffused through the nitride. The results of ONO film analysis exhibits that it is made up of SiO$_2$(blocking oxide)/O-rich SiON(interface/N-rich SiON(nitride)/-rich SiON(interface)/N-rich SiON(nitride)/O-rich SiON(tunneling oxide).

  • PDF

Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading (혼합 하중하에서의 고분자/거친금속 계면의 파손경로)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction (플라즈마 환원 기술을 응용한 장수명의 은나노와이어/Reduced Graphene Oxide 하이브리드 투명전극 개발)

  • Jung, Sunghoon;Ahn, Wonmin;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.87-91
    • /
    • 2016
  • The development of high performance transparent electrode with flexibility have been required for flexible electronics. Here, we demonstrate the silver nanowire and reduced graphene oxide hybrid transparent electrode for replacing brittle indium-tin-oxide electrode by spray coating technique and plasma reduction. The spray coating system is applied to deposit silver nanowire and over coated graphene oxide films and it has a great potential to scale-up. The resistance of silver nanowire transparent electrode is reduced by 10% and the surface roughness is decreased after graphene oxide coating. The over-coated graphene oxide is successfully reduced by $H_2$ plasma treatment and it is effective in increasing the environmental stability of electrode. The lifetime of silver nanowire and reduced graphene oxide hybrid electrode at $85^{\circ}C$ of Celsius degree of temperature and 85% of relative humidity has much increased.