Browse > Article
http://dx.doi.org/10.4150/KPMI.2010.17.4.276

A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles  

Kim, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Lee, Gyoung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Journal of Powder Materials / v.17, no.4, 2010 , pp. 276-280 More about this Journal
Abstract
In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.
Keywords
Nanofluid; Pulsed wire evaporation; Copper oxide; Thermal conductivity; Viscosity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. P. Jang and S. U. S. Choi: Appl. Phys. Lett., 84 (2004) 4316.   DOI   ScienceOn
2 R. L. Hamilton and O. K. Crosser: I & EC Fundamentals, 1 (1962) 187.   DOI
3 S. K. Das, N. Putra, P. Thiesen and W. Roetzel: J. Heat Transfer. 125 (2003) 567.   DOI   ScienceOn
4 S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke: Appl. Phys. Lett., 79 (2001) 2252.   DOI   ScienceOn
5 J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: Appl. Phys. Lett., 78 (2001) 718.   DOI   ScienceOn
6 S. U. S. Choi: ASME FED, 231 (2002) 99.
7 H. Xie, J. Wang, T. Xi and Y. Liu: Int. J. Thermophys., 23 (2002) 571.   DOI
8 H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep: Appl. Phys. Lett., 83 (2003) 2931.   DOI   ScienceOn
9 G. Schmin: Chem. Rev., 92 (1992) 1709.   DOI
10 C. B. Hwang, Y. S. Fu and S. J. Yu: J. Catal., 195 (2000) 336.   DOI   ScienceOn
11 K. H. Kim, J. H. Sim and I. H. Bae: Kor. J. Mater. Res., 18 (2008) 610.   DOI   ScienceOn
12 C. K. Kim, G. J. Lee and C. K. Rhee: Kor. J. Mater. Res., 19 (2009) 468.   DOI
13 G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim: J. Ind. Eng. Chem., 9 (2003) 71.
14 Y. H. Oh, G. H. Lee, J. H. Park and C. K. Rhee: J. Kor. Powd. Metall. Ins., 12 (2005) 186.   DOI   ScienceOn
15 S. Lee, S. U. S. Choi, S. Li and J. A. Eastman: ASME Trans. J. Heat. Trans., 121 (1999) 280.   DOI
16 H. M. Lee, J. H. Park, S. M. Hong, Y. R. Uhm and C. K. Rhee: J. Kor. Powder. Metall. Inst., 16 (2009) 243. (Korean)   DOI   ScienceOn
17 G. Viera, S. N. Sharma, J. J. Andujar, R. Q. Zhang, J. Costa and E. Bertran: Vacuum, 52 (1999) 183.   DOI   ScienceOn
18 R. Prasher, D. Song and J. Wang: Appl. Phy. Letters, 89 (2006) 133108.   DOI   ScienceOn