• Title/Summary/Keyword: oxidative stress resistance

검색결과 154건 처리시간 0.026초

꼬마선충의 coelomocyte 세포가 스트레스 저항성 및 번식력에 미치는 영향 (Role of Coelomocytes in Stress Response and Fertility in Caenorhabditis elegans)

  • 박진국;황진규;송건형;박상규
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.263-268
    • /
    • 2015
  • 체강 소체는 꼬마 선충에서 내화과정을 통해 체강 내 액체를 세포 안으로 들여오는 특이적인 세포이다. 본 연구실에서의 최근 연구 결과에 의하면, 꼬마 선충에서 식이제한에 의한 수명연장에 체강 소체가 필수적임이 발견되었다. 본 연구에서는 꼬마 선충에서 체강 소체를 제거하였을 경우, 환경적 스트레스에 대한 저항성과 번식력을 개체 수준에서 연구하였다. 체강 소체는 체강 소체에만 특이적으로 발현하는 디프테리아 독소를 이용하여 제거하였다. 먼저 자외선에 대한 저항성은 20 J/cm2/min의 자외선을 조사한 후, 생존률의 변화를 매일 기록하였다. 또한 꼬마 선충을 35℃ 배양기에 10시간 동안 배양하여 열 스트레스를 가한 후, 생존률의 변화를 관찰하였다. 산화성 스트레스는 paraquat를 이용하여 생체 내 산화성 스트레스를 유도한 다음, 산화성 스트레스에 대한 저항성을 비교하다. 번식력의 경우, 번식기간 동안의 총 자손의 수와 날짜 별 자손의 수를 비교 분석하였다. 그 결과, 체강소체는 개체의 자외선 스트레스의 저항성에는 필수적이지만, 열과 산화성 스트레스 저항성에는 영향을 미치진 않는 것으로 보인다. 그리고 개체의 번식력에도 관여하는 것으로 나타났다. 본 연구 결과는 노화 및 식이제한에 의한 수명연장의 기전을 이해하는데 기여할 것으로 사료된다.

Expression of Catalase (CAT) and Ascorbate Peroxidase (APX) in MuSI Transgenic Tobacco under Cadmium Stress

  • Kim, Kye-Hoon;Kim, Young-Nam;Lim, Ga-Hee;Lee, Mi-Na;Jung, Yoon-Hwa
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.53-57
    • /
    • 2011
  • The MuSI is known as a multiple stress resistant gene with several lines. A previous study using RT-PCR showed that the expression of MuSI gene in tobacco plant induced its tolerance to Cd stress. This study was conducted to examine the enhanced Cd tolerance of the MuSI transgenic tobacco plant through germination test and to understand the role of the involved antioxidant enzymes for the exhibited tolerance. Germination rate of MuSI transgenic tobacco was more than 10% higher than that of wild-type tobacco, and seedlings of MuSI transgenic tobacco grew up to 1.6 times larger and greener than seedlings of wild-type tobacco at 200 and 300 ${\mu}M$ Cd. From the third to the fifth day, CAT activities at 100 and 200 ${\mu}M$ Cd and APX activities at 100, 200 and 300 ${\mu}M$ Cd of MuSI transgenic tobacco were up to two times higher than those of wild-type tobacco. MuSI gene is shown to enhance the activities of antioxidant enzymes resulting in higher tolerance to oxidative stress compared with the control plant.

Streptomyces coelicolor A3(2)의 Acetyl Xylan Esterase를 발현하는 Escherichia coli의 과산화수소 저항성 ($H_2$ $O_2$ Resistance of Escherichia coli That Expresses Acetyl Xylan Esterase of Streptomyces coelicolor A3(2))

  • 김재헌;최원일;윤석원;정상운;오충훈
    • 미생물학회지
    • /
    • 제40권3호
    • /
    • pp.232-236
    • /
    • 2004
  • Streptomyces coelicolor A3(2)의 acetyl xylan esterase (AxeA)가 Escherichia coli의 과산화수소 저항성에 미치는 영향을 알아보고자 하였다. AxeA 발현은 isopropyl-$\beta$-thiogalactoside로 유도되었고 생산된 AxeA는 SDS-polyacrylamide gel electrophoresis방법으로 확인하였다. AxeA 발현에 따른 과산화수소 저항성의 변화를 E. coli의 생장곡선과 생존율을 통하여 조사하였다. AxeA가 발현되지 않으면 모든 처리 농도 (1 mM, 2.5mM, 5mM)에서 균의 사멸이 일어났다. AxeA가 발현되는 조건에서는 5mM을 제외한 과산화수소 1mM와 2.5mM에서 E. coli의 사멸이 저지되었다. 또한 1.5mM의 과산화수소에 대한생존율이 59%에서 74%로 높다졌다. 동시에 E. coli의 최고생장온도에서에 근접한 $45^{\circ}C$에서의 생존율도 증가되는 결과를 얻었다. 그러므로 AxeA 단백질은 산화적 스트레스와 온도스트레스에 대해 교차 저항성을 나타내는 역할을 한다고 결론지었다.

구리-오염 토양에서 토마토 식물의 생장과 스트레스-관련 유전자 발현에 미치는 구리-내성 Pseudomonas의 영향 (Effect of Cu-resistant Pseudomonas on growth and expression of stress-related genes of tomato plant under Cu stress)

  • 김민주;송홍규
    • 미생물학회지
    • /
    • 제53권4호
    • /
    • pp.257-264
    • /
    • 2017
  • Pseudomonas veronii MS1과 P. migulae MS2는 여러 가지의 구리-내성 및 식물 생장 촉진 방법을 갖고 있으며 또한 스트레스 에틸렌의 전구체인 1-aminocyclopropane-1-carboxylic acid (ACC)의 ACC deaminase에 의한 가수분해를 통해 식물에서 비생물적 스트레스를 완화시킬 수 있다. 구리 농도 700 mg/kg 토양에서의 4주간 소규모 토마토 재배 실험에서 MS1과 MS2 접종은 비접종 대조군에 비해 토마토 식물의 지상부와 뿌리 길이 및 습윤중량과 건조중량을 모두 유의성 있게 증가시켰다. 접종 토마토 식물은 비생물적 스트레스로부터 식물을 보호할 수 있는 proline및 산화 스트레스 지표인 malondialdehyde도 비접종 대조군보다 적게 함유하였다. 에틸렌 생합성에 관여하는 ACC synthase 유전자, ACS4와 ACS6 그리고 ACC oxidase 유전자, ACO1와 ACO4는 구리 스트레스를 받는 토마토에서 강하게 발현된 반면 MS1과 MS2 접종 토마토에서는 유의성 있게 감소했다. 또한 금속 결합 단백질인 metallothionein 암호화 유전자인 MT2도 위의 유전자들과 유사한 발현 양상을 보였다. 이 모든 결과들은 이 근권세균들이 구리 스트레스 하의 토마토 식물에 구리 내성을 부여하여 낮은 수준의 구리 스트레스와 생장 촉진을 허용하는 것을 가리킨다.

Endogenous catalase delays high-fat diet-induced liver injury in mice

  • Piao, Lingjuan;Choi, Jiyeon;Kwon, Guideock;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권3호
    • /
    • pp.317-325
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in parallel with worldwide epidemic of obesity. Reactive oxygen species (ROS) contributes to the development and progression of NAFLD. Peroxisomes play an important role in fatty acid oxidation and ROS homeostasis, and catalase is an antioxidant exclusively expressed in peroxisome. The present study examined the role of endogenous catalase in early stage of NAFLD. 8-week-old male catalase knock-out (CKO) and age-matched C57BL/6J wild type (WT) mice were fed either a normal diet (ND: 18% of total calories from fat) or a high fat diet (HFD: 60% of total calories from fat) for 2 weeks. CKO mice gained body weight faster than WT mice at early period of HFD feeding. Plasma triglyceride and ALT, fasting plasma insulin, as well as liver lipid accumulation, inflammation (F4/80 staining), and oxidative stress (8-oxo-dG staining and nitrotyrosine level) were significantly increased in CKO but not in WT mice at 2 weeks of HFD feeding. While phosphorylation of Akt (Ser473) and $PGC1{\alpha}$ mRNA expression were decreased in both CKO and WT mice at HFD feeding, $GSK3{\beta}$ phosphorylation and Cox4-il mRNA expression in the liver were decreased only in CKO-HF mice. Taken together, the present data demonstrated that endogenous catalase exerted beneficial effects in protecting liver injury including lipid accumulation and inflammation through maintaining liver redox balance from the early stage of HFD-induced metabolic stress.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

Proteome analysis of sorghum leaf and root in response to heavy metal stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.24-24
    • /
    • 2017
  • Heavy metals at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to oxidative stress in plants. The present study was performed to explore the metal tolerance mechanism in Sorghum seedling. Morpho-physiological and metal ions uptake changes were observed prominently in the seedlings when the plants were subjected to different concentrations of $CuSO_4$ and $CdCl_2$. The observed morphological changes revealed that the plants treated with Cu and Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cu and Cd was markedly increased by treatment with Cu and Cd, and the amount of interacting ions taken up by the shoots and roots was significantly and directly correlated with the applied level of Cu and Cd. Using the 2-DE method, a total of 24 and 21 differentially expressed protein spots from sorghum leaves and roots respectively, 33 protein spots from sorghum leaves under Cd stress were analyzed using MALDI-TOF/TOF MS. However, the over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. The results obtained from the present study may provide insights into the tolerance mechanism of seedling leaves and roots in Sorghum under heavy metal stress.

  • PDF

YlaC is an Extracytoplasmic Function (ECF) Sigma Factor Contributing to Hydrogen Peroxide Resistance in Bacillus subtilis

  • Ryu Han-Bong;Shin In-Ji;Yim Hyung-Soon;Kang Sa-Ouk
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.206-216
    • /
    • 2006
  • In this study, we have attempted to characterize the functions of YlaC and YlaD encoded by ylaC and ylaD genes in Bacillus subtilis. The GUS reporter gene, driven by the yla operon promoter, was expressed primarily during the late exponential and early stationary phase, and its expression increased as the result of hydrogen peroxide treatment. Northern and Western blot analyses revealed that the level of ylaC transcripts and YlaC increased as the result of challenge with hydrogen peroxide. A YlaC-overexpressing strain evidenced hydrogen peroxide resistance and a three-fold higher peroxidase activity as compared with a deletion mutant. YlaC-overexpressing and YlaD-disrupted strains evidenced higher sporulation rates than were observed in the YlaC-disrupted and YlaD-overexpressing strains. Analyses of the results of native polyacrylamide gel electrophoresis of recombinant YlaC and YlaD indicated that interaction between YlaC and YlaD was regulated by the redox state of YlaD in vitro. Collectively, the results of this study appear to suggest that YlaC regulated by the YlaD redox state, contribute to oxidative stress resistance in B. subtilis.

Physiological responses of Fucus serratus (Phaeophyceae) to high doses of cadmium exposure

  • Lee, Soon-Jeong;Cho, Mi-Young;Han, Hyun-Ja;Jee, Bo-Young;Kim, Jin-Woo
    • 한국어병학회지
    • /
    • 제24권2호
    • /
    • pp.141-152
    • /
    • 2011
  • Growth, oxidative stress and antioxidant capacity of Fucus serratus exposed to high doses of Cd were examined. Two sites in Southwest England (Restronguet Point and Bantham Quay) were selected since they had different histories of metal contamination. 1~10 mg Cd $L^{-1}$ were treated to Aquil medium for up to 14 days. Similar levels of lipid peroxidation but different values of relative growth rates, cupric ion reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging capacity indicated that F. serratus has population-dependent antioxidant strategies. F. serratus demonstrated cadmium resistance with no visual symptoms for 14 days and the population from the polluted area seemed to have more powerful antioxidant strategies. However Fucus from the conserved area also showed protective anti oxidative mechanism.

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • 제49권4호
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.