DOI QR코드

DOI QR Code

Physiological responses of Fucus serratus (Phaeophyceae) to high doses of cadmium exposure

  • Lee, Soon-Jeong (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Cho, Mi-Young (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Han, Hyun-Ja (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Jee, Bo-Young (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute) ;
  • Kim, Jin-Woo (Aquatic Life Disease Control Division, National Fisheries Research and Development Institute)
  • Received : 2011.06.30
  • Accepted : 2011.08.02
  • Published : 2011.08.31

Abstract

Growth, oxidative stress and antioxidant capacity of Fucus serratus exposed to high doses of Cd were examined. Two sites in Southwest England (Restronguet Point and Bantham Quay) were selected since they had different histories of metal contamination. 1~10 mg Cd $L^{-1}$ were treated to Aquil medium for up to 14 days. Similar levels of lipid peroxidation but different values of relative growth rates, cupric ion reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging capacity indicated that F. serratus has population-dependent antioxidant strategies. F. serratus demonstrated cadmium resistance with no visual symptoms for 14 days and the population from the polluted area seemed to have more powerful antioxidant strategies. However Fucus from the conserved area also showed protective anti oxidative mechanism.

Keywords

References

  1. Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S.E., Bektasoglu, B., Berker, K.I. and Ozyurt, D.: Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12: 1496-1547, 2007. https://doi.org/10.3390/12071496
  2. Asada, K. and Takahashi, M.: Production and scavenging of active oxygen species in photosynthesis. In Photoinhibition, Kyle, D.J., Osmond, C. and Arntzen, C. (eds.), Elsevier Science Publishers, New York, pp. 227-287, 1987.
  3. Brown, M.T. and Newman, J.E.: Physiological responses of Gracilariopsis longissima (S.G. Gmelin) Steentoft, L.M. Irvine and Farnham (Rhodophyceae) to sub-lethal copper concentrations. Aquatic Toxicology, 64: 201-213, 2003. https://doi.org/10.1016/S0166-445X(03)00054-7
  4. Bryan, G.W. and Gibbs, P.E.: Heavy metals in the Fal estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Occasional Publication of Marine Biological Association of the United Kingdom, 2: 1-112, 1983.
  5. Bryan, G.W. and Langston, W.J.: Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76: 89-131, 1992. https://doi.org/10.1016/0269-7491(92)90099-V
  6. Bryan, G.W., Langston, W.J., Hummerstone, L.G. and Burt, G.R.: A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Marine Biological Association of the United Kingdom, 4: 92, 1985.
  7. Collen, J. and Davison, I.R.: Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). Journal of Phycology, 35: 62-69, 1999a. https://doi.org/10.1046/j.1529-8817.1999.3510062.x
  8. Collen, J. and Davison, I.R.: Reactive oxygen production and damage in intertidal Fucus spp. (Phaeophyceae). Journal of Phycology, 35: 54-61, 1999b. https://doi.org/10.1046/j.1529-8817.1999.3510054.x
  9. Collen, J. and Davison, I.R.: Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant, Cell & Environment, 22: 1143-1151, 1999c. https://doi.org/10.1046/j.1365-3040.1999.00477.x
  10. Collen, J., Pinto, E., Pedersen, M. and Colepicolo, P.: Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Archives of Environmental Contamination and Toxicology, 45: 337-342, 2003.
  11. Connan, S., Delisle, F., Deslandes, E. and Gall, E.A.: Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49: 39-46, 2006.
  12. Contreras, L., Moenne, A. and Correa, J.A.: Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments. Journal of Phycology, 41: 1184-1195, 2005. https://doi.org/10.1111/j.1529-8817.2005.00151.x
  13. Correa, J.A., Gonzalez, P., Sanchez, P., Munoz, J. and Orellana, M.C.: Copper-algae interactions: inheritance or adaptation? Environmental Monitoring and Assessment, 40: 41-54, 1996. https://doi.org/10.1007/BF00395166
  14. Davis, T.A., Volesky, B. and Mucci, A.: A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37: 4311-4330, 2003. https://doi.org/10.1016/S0043-1354(03)00293-8
  15. Dummermuth, A.L., Karsten, U., Fisch, K.M., Konig, G.M. and Wiencke, C.: Responses of marine macroalgae to hydrogen-peroxide stress. Journal of Experimental Marine Biology and Ecology, 289: 103-121, 2003. https://doi.org/10.1016/S0022-0981(03)00042-X
  16. Forstner, U. and Wittmann, G.T.W.: Metal Pollution in the Aquatic Environment, Springer-Verlag, Berlin, Germany, 1983.
  17. Guclu, K., Altun, M., Ozyurek, M., Karademir, S.E. and Apak, R.: Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science & Technology, 41: 76-85, 2006. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  18. Gulcin, I., Oktay, M., Kirecci, E. and Kufrevioglu, O.I.: Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83: 371-382, 2003. https://doi.org/10.1016/S0308-8146(03)00098-0
  19. Gerrard, S.: The Early British Tin Industry, Tempus Publishing Ltd, Stroud, 2000.
  20. Halliwell, B. and Gutteridge, J.M.C.: Free radicals in biology and medicine, Oxford University Press, Oxford, 2007.
  21. Han, T., Kang, S.-H., Park, J.-S., Lee, H.-K. and Brown, M.T.: Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquatic Toxicology, 86: 176-184, 2008. https://doi.org/10.1016/j.aquatox.2007.10.016
  22. Hashim, M.A. and Chu, K.H.: Biosorption of cadmium by brown, green, and red seaweeds. Chemical Engineering Journal, 97: 249-255, 2004. https://doi.org/10.1016/S1385-8947(03)00216-X
  23. Hu, S., Tang, C.H. and Wu, M.: Cadmium accumulation by several seaweeds. Science of The Total Environment, 187: 65-71, 1996. https://doi.org/10.1016/0048-9697(96)05143-1
  24. Hunt, R.: Plant Growth Curves, Edward Arnold Publisher Ltd., London, U.K., 1982.
  25. Jimenez-Escrig, A., Jimenez-Jimenez, I., Pulido, R. and Saura-Calixto, F.: Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, 81: 530-534(5), 2001. https://doi.org/10.1002/jsfa.842
  26. Kupper, H., Setlik, I., Spiller, M., Kupper, F.C. and Prasil, O.: Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38: 429-441, 2002. https://doi.org/10.1046/j.1529-8817.2002.t01-1-01148.x
  27. Lee, S.J.: Physiological and Biochemical Responses to Cadmium Exposure in Fucus serratus (Phaeophyceae). School of Biological Sciences. University of Plymouth, Plymouth, UK, 2009.
  28. Matsukawa, R., Dubinsky, Z., Kishimoto, E., Masaki, K., Masuda, Y., Takeuchi, T., Chihara, M., Yamamoto, Y., Niki, E. and Karube, I.: A comparison of screening methods for antioxidant activity in seaweeds. Journal of Applied Phycology, 9: 29-35, 1997. https://doi.org/10.1023/A:1007935218120
  29. Muriel, P.: Peroxidation of lipids and liver damage. In Oxidants, Antioxidants, and Free Radicals, 237-, Baskin, S.I.andSalem, H. (eds.), Taylor & Francis Ltd., London, UK, 1997.
  30. Nielsen, H.D.: Copper toxicity in the physiology and early development of Fucus serratus. Department of Biological Sciences. University of Plymouth, Plymouth, UK, 2002.
  31. Nielsen, H.D., Brownlee, C., Coelho, S.M. and Brown, M.T.: Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytologist, 160: 157-165, 2003. https://doi.org/10.1046/j.1469-8137.2003.00864.x
  32. Noctor, G. and Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 249-279, 1998. https://doi.org/10.1146/annurev.arplant.49.1.249
  33. Okamoto, O.K., Pinto, E., Latorre, L.R., Bechara, E.J.H. and Colepicolo, P.: Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Archives of Environmental Contamination and Toxicology, 40: 18-24, 2001a. https://doi.org/10.1007/s002440010144
  34. Okamoto, O.K., Robertson, D.L., Fagan, T.F., Hastings, J.W. and Colepicolo, P.: Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. Journal of Biologica Chemistry, 276: 19989-19993, 2001b. https://doi.org/10.1074/jbc.M101169200
  35. Okamoto, O.K., Shao, L., Hastings, J.W. and Colepicolo, P.: Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 123: 75-83, 1999. https://doi.org/10.1016/S0742-8413(99)00013-4
  36. Ozturka, M., Aydogmus-Ozturkb, F., Duru, M.E. and Topcud, G.: Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): An edible medicinal plant. Food Chemistry, 103: 623-630, 2007. https://doi.org/10.1016/j.foodchem.2006.09.005
  37. Pinto, E., Sigaud-kutner, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D. and Colepicolo, P.: Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39: 1008-1018, 2003. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
  38. Pirrie, D., Power, M.R., Rollinson, G., Camm, G.S., Hughes, S.H., Butcher, A.R. and Hughes, P.: The spatial distribution and source of arsenic, copper, tin and zinc within the surface sediments of the Fal Estuary, Cornwall, UK. Sedimentology, 50: 579-595, 2003. https://doi.org/10.1046/j.1365-3091.2003.00566.x
  39. Randhawa, V.K., Zhou, F., Jin, X., Nalewajko, C. and Kushner, D.J.: Role of oxidative stress and thiol antioxidant enzymes in nickel toxicity and resistance in strains of the green alga Scenedesmus acutus f. alternans. Canadian Journal of Microbiology, 47: 987-993, 2001. https://doi.org/10.1139/w01-103
  40. Ratkevicius, N., Correa, J.A. and Moenne, A.: Copper accumulation, synthesis of ascorbate and activation of ascorbate peroxidase in Enteromorpha compressa (L.) Grev. (Chlorophyta) from heavy metal-enriched environments in northern Chile. Plant, Cell & Environment, 26: 1599-1608, 2003. https://doi.org/10.1046/j.1365-3040.2003.01073.x
  41. Rijstenbil, J.W., Haritonidis, S., Malea, P., Seferlis, M. and Wijnholds, J.A.: Thiol pools and glutathione redox ratios as possible indicators of copper toxicity in the green macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (Greece, N Aegean Sea). Hydrobiologia, 385: 171-181, 1998. https://doi.org/10.1023/A:1003502428466
  42. Sokal, R.R. and Rohlf, F.J.: Biometry : the principles and practice of statistics in biological research, Freeman, New York, Oxford, 1995.
  43. Stauber, J.L. and Florence, T.M.: Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology, 94: 511-519, 1987. https://doi.org/10.1007/BF00431397
  44. Van Assche, F. and Clijsters, H.: Effects of metals on enzyme activity in plants. Plant, Cell and Environment, 13: 195-206, 1990. https://doi.org/10.1111/j.1365-3040.1990.tb01304.x
  45. Yan, X., Nagata, T. and Fan, X.: Antioxidative activities in some common seaweeds. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 52: 253-262, 1998. https://doi.org/10.1023/A:1008007014659