• 제목/요약/키워드: oxidative nitration

검색결과 9건 처리시간 0.025초

${\alpha},{\omega}$-디올로부터 디니트로 ${\alpha},{\omega}$--디올의 합성 (Synthesis of Dinitro ${\alpha},{\omega}$--Diols from ${\alpha},{\omega}$--Diols)

  • 정규현;박일교
    • 대한화학회지
    • /
    • 제37권2호
    • /
    • pp.244-248
    • /
    • 1993
  • 니트로 알코올은 브로모 알코올의 치환반응으로 얻었다. 두번째 니트로 원자단은 사슬 길이에 따라 다른 방법으로 도입했다. 3,3-dinitro-1-propanol은 분자내 염기성 니트로화 반응으로 형성되면 5,5-dinitro-1-pentanol은 산화촉매 니트로화 반응으로 얻었다. 3,3-dinitro-1,6-hexanediol과 4,4-dinitro-1,8-octanediol은 3,3-dinitro-1-propanol과 5,5-dinitro-1-pentanol에 acrolein을 가해 Michael 반응으로 알데히드를 얻고 환원하여 합성했다. 치환반응시 알코올 보호기는 아세틸기가 좋으며 산화촉매 니트로 반응에서는 THP 원자단이 좋은 보호기이다.

  • PDF

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok;Lee, Soo-Jae;Lee, Jung-Rok;Kim, Kwang-Pyo
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.194-203
    • /
    • 2008
  • Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.711-714
    • /
    • 2004
  • Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.

포르말계 에너지화 가소제의 합성 및 특성분석 (Systhesis and Characterization of energetic plasticizers, Formal)

  • 김진석;이근득;조진래
    • 한국군사과학기술학회지
    • /
    • 제5권4호
    • /
    • pp.49-56
    • /
    • 2002
  • For the purpose of the increase in the performance and thermal stability of PBX's, the mixed formal consisting of BDNPF, DNPBF and BDNBF were synthesized. In order to find out the optimal condition for the synthesis of energetic plasticizer, BDNPF, DNPBF and BDNBF, the synthetic procedures have been investigated. We synthesized DNP-OH and DNB-OH through oxidative nitration and controlled various composition of mixed formal by $H_{2}SO_{4}$ and s-trioxane to investigate optimal composition, and then characterized its thermo-physical properties.

Peroxynitrite Scavenging Activity of Active Constituents from Scutellaria baicalensis

  • Kim, Dae-Hyun;Choi, Jae-Sue;Jung, Hyun-Ah;Kim, Dong-Hyun;Chung, Hae-Young
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.317.2-317.2
    • /
    • 2002
  • Peroxynitrite, formed from the reaction of .O2- and .NO, is a cytotoxic species that can oxidize several cellular components such as proteins. lipids and DNA. Oxidative stress is considered to be the major cause of aging and many age-related diseases including Alzheimer's disease. rheumatoid arthritis. cancer. and atherosclerosis. ONO-, a powerful oxidant, can cause damage of proteins, lipid and DNA through nitration and oxidation. (omitted)

  • PDF

Subtilisin QK, a Fibrinolytic Enzyme, Inhibits the Exogenous Nitrite and Hydrogen Peroxide Induced Protein Nitration, inVitro and inVivo

  • Ko, Ju-Ho;Yan, Junpeng;Zhu, Lei;Qi, Yipeng
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.577-583
    • /
    • 2005
  • Subtilisin QK, which is newly identified as a fibrinolytic enzyme from Bacillus subtilis QK02, has the ability of preventing nitrotyrosine formation in bovine serum albumin induced by nitrite, hydrogen peroxide and hemoglobin in vitro verified by ELISA, Western-blot and spectrophotometer assay. Subtilisin QK also attenuates the fluorescence emission spectra of bovine serum albumin in the course of oxidation caused by nitrite, hydrogen peroxide and hemoglobin. Furthermore, subtilisin QK could suppress the transformation of oxy-hemoglobin to met-hemoglobin caused by sodium nitrite, but not the heat-treated subtilisn QK. Compared with some other fibrinolytic enzymes and inactivated subtilisin QK treated by phenylmethylsulfonylfluoride, the ability of inhibiting met-hemoglobin formation of subtilisin QK reveals that the anti-oxidative ability of subtilisin QK is not concerned with its fibrinolytic function. Additionally, nitrotyrosine formation in proteins from brain, heart, liver, kidney, and muscle of mice that is intramuscular injected the mixture of nitrite, hydrogen peroxide and hemoglobin is attenuated by subtilisin QK. Subtilisin QK can also protect Human umbilical vein endothelial cell (ECV-304) from the damage caused by nitrite and hydrogen peroxide.

분자화약 TNAZ 합성에 대한 개선 기법 (Advances synthesis process of TNAZ)

  • 전용구
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.108-115
    • /
    • 2003
  • TNAZ is a high explosive material because it is a highly strained ring compound containing one nitramine and gem dinditro groups. 1-t-butyl-3-nitroazetidine which was used as an intermediate previously, which declined the overall yield in synthesizing TNAZ. We obtained 1-t-butyl-3-hydroxymethyl-3-nitroazetidine in 64% yield from advances process which was used in synthesis of 1-t-butyl-3-nitroazetidine. The reaction pathway, shortening of reaction time, together with improvement of yield were studied too. We have obtained TNAZ in 85% yield.

Protective effect of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on hypoxia-induced toxicity by suppressing microglial activation in BV-2 cells

  • Kim, Jiae;Kim, Su-Min;Na, Jung-Min;Hahn, Hoh-Gyu;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.687-692
    • /
    • 2016
  • We recently reported the anti-inflammatory effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on the ATP-induced activation of the NFAT and MAPK pathways through the P2X7 receptor in microglia. To further investigate the underlying mechanism of KHG26792, we studied its protective effects on hypoxia-induced toxicity in microglia. The administration of KHG26792 significantly reduced the hypoxia-induced expression and activity of caspase-3 in BV-2 microglial cells. KHG26792 also reduced hypoxia-induced inducible nitric oxide synthase protein expression, which correlated with reduced nitric oxide accumulation. In addition, KHG26792 attenuated hypoxia-induced protein nitration, reactive oxygen species production, and NADPH oxidase activity. These effects were accompanied by the suppression of hypoxia-induced protein expression of hypoxia-inducible factor 1-alpha and NADPH oxidase-2. Although the clinical relevance of our findings remains to be determined, these data results suggest that KHG26792 prevents hypoxia-induced toxicity by suppressing microglial activation.

Nitric Oxide Donor 첨가가 구리 결핍 배아의 발달과 Nitric Oxide 하위 신호전달체계에 미치는 영향 (Effects of Nitric Oxide Donor Supplementation on Copper Deficient Embryos and Nitric Oxide-Mediated Downstream Signaling)

  • 양수진
    • Journal of Nutrition and Health
    • /
    • 제41권8호
    • /
    • pp.691-700
    • /
    • 2008
  • 본 연구는 착상 후 단계의 쥐 배아와 난황낭을 대상으로 구리 결핍이 NO 하부 신호전달체계에 영향을 주는지를 알아보기 위한 것으로, 연구 결과는 다음과 같이 요약할 수 있다. 첫째, 구리 결핍은 정상적인 배아 및 난황낭 발달을 억제하고, NO의 생물학적 이용도와 아세틸콜린에 대한 NO dose-response를 낮추었다. 둘째, 구리 결핍은 NO의 하부 신호전달 물질인 cGMP 수준을 감소시켰으나, NO/cGMP 하부 신호전달체계 표적 중 하나인 P-VASP에는 영향을 미치지 않았다. 셋째, 구리 결핍 배양액에 NO donor를 첨가하는 것은 구리 결핍 배아와 난황낭의 기형 발생 빈도를 구리 정상군과 비슷한 수준으로 개선시켰다. 넷째, NO donor 첨가는 구리 결핍군에서 감소되었던 cGMP의 농도를 유의적으로 증가시켰지만, P-VASP에는 영향을 미치지 않았다. 상기 연구 결과들은 구리 결핍으로 인한 NO의 생물학적 이용도의 감소가 기형발생의 주요 발생 기전이라는 것을 뒷 받침하고 있다. 또한, 임상적으로 임신 기간 중 적절한 구리 섭취의 중요성을 강조한다.