DOI QR코드

DOI QR Code

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi (Department of Biochemistry, Kangwon National University) ;
  • Han, Sang-Hwa (Department of Biochemistry, Kangwon National University)
  • Published : 2004.05.20

Abstract

Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.

Keywords

References

  1. Radi, R.; Peluffo, G.; Alvarez, M. N.; Naviliat, M.; Cayota, A.Free Radic. Biol. Med. 2001, 30, 463. https://doi.org/10.1016/S0891-5849(00)00373-7
  2. Turkozkan, N.; Unlu, A.; Ertabak, A.; Cimen, B.; Karabicak, U.Clin. Chem. Lab. Med. 2001, 39, 1263. https://doi.org/10.1515/CCLM.2001.203
  3. Denicola, A.; Souza, J. M.; Radi, R. Proc. Natl. Acad. Sci. USA1998, 95, 3566. https://doi.org/10.1073/pnas.95.7.3566
  4. Augusto, O.; Lopes de Menezes, S.; Linares, E.; Romero, N.;Radi, R.; Denicola, A. Biochemistry 2002, 41, 14323. https://doi.org/10.1021/bi0262202
  5. Mallozzi, C.; Di Stasi, A. M.; Minetti, M. FASEB J. 1997, 11,1281.
  6. Mallozzi, C.; Di Stasi, M. A.; Minetti, M. Free Radic. Biol. Med.2001, 30, 1108. https://doi.org/10.1016/S0891-5849(01)00509-3
  7. Soszynski, M.; Bartosz, G. Biochim. Biophys. Acta 1996, 1291, 107. https://doi.org/10.1016/0304-4165(96)00052-9
  8. Weiss, S. J. J. Biol. Chem. 1982, 257, 2947.
  9. Nagababu, E.; Chrest, F. J.; Rifkind, J. M. Biochim. Biophys. Acta2003, 1620, 211. https://doi.org/10.1016/S0304-4165(02)00537-8
  10. Zavodnik, I. B.; Lapshina, E. A.; Zavodnik, L. B.; Bartosz, G.;Soszynski, M.; Bryszewska, M. Free Radic. Biol. Med. 2001, 30,363. https://doi.org/10.1016/S0891-5849(00)00479-2
  11. Tripp, B. C.; Smith, K.; Ferry, J. G. J. Biol. Chem. 2001, 276, 48615. https://doi.org/10.1074/jbc.R100045200
  12. Vince, J. W.; Carlsson, U.; Reithmeier, R. A. Biochemistry 2000,39, 13344. https://doi.org/10.1021/bi0015111
  13. Li, X.; Alvarez, B.; Casey, J. R.; Reithmeier, R. A.; Fliegel, L. J.Biol. Chem. 2002, 277, 36085. https://doi.org/10.1074/jbc.M111952200
  14. Uppu, R. M.; Pryor, W. A. Anal. Biochem. 1996, 236, 242. https://doi.org/10.1006/abio.1996.0162
  15. Mallis, R. J.; Hamann, M. J.; Zhao, W.; Zhang, T.; Hendrich, S.;Thomas, J. A. Biol. Chem. 2002, 383, 649. https://doi.org/10.1515/BC.2002.067
  16. Moriguchi, M.; Manning, L. R.; Manning, J. M. Biochem.Biophys. Res. Commun. 1992, 183, 598. https://doi.org/10.1016/0006-291X(92)90524-O
  17. Ji, Y.; Akerboom, T. P.; Sies, H.; Thomas, J. A. Arch. Biochem.Biophys. 1999, 362, 67. https://doi.org/10.1006/abbi.1998.1013
  18. Hawkins, C. L.; Pattison, D. I.; Davies, M. J. Amino Acids 2003,25, 259. https://doi.org/10.1007/s00726-003-0016-x
  19. Nowak, P.; Wachowicz, B. Platelets 2002, 13, 293. https://doi.org/10.1080/0953770021000007230
  20. Ischiropoulos, H.; al-Mehdi, A. B. FEBS Lett. 1995, 364, 279. https://doi.org/10.1016/0014-5793(95)00307-U
  21. Jurgens, G.; Hoff, H. F.; Chisolm, G. M., 3rd.; Esterbauer, H.Chem. Phys. Lipids 1987, 45, 315. https://doi.org/10.1016/0009-3084(87)90070-3
  22. Lee, Y. K.; Kim, S. M.; Han, S. Biochimie 2003, 85, 947. https://doi.org/10.1016/j.biochi.2003.09.012
  23. Ischiropoulos, H. Biochem. Biophys. Res. Commun. 2003, 305,776. https://doi.org/10.1016/S0006-291X(03)00814-3
  24. Alvarez, B.; Rubbo, H.; Kirk, M.; Barnes, S.; Freeman, B. A.;Radi, R. Chem. Res. Toxicol. 1996, 9, 390. https://doi.org/10.1021/tx950133b
  25. Herold, S. Free Radic. Biol. Med. 2004, 36, 565. https://doi.org/10.1016/j.freeradbiomed.2003.10.014

Cited by

  1. Metallothionein Induces Site-specific Cleavages in tRNAPhe vol.26, pp.6, 2004, https://doi.org/10.5012/bkcs.2005.26.6.921
  2. Irreversible Inactivation of Glutaredoxins 1 and 2 by Peroxynitrite vol.28, pp.1, 2004, https://doi.org/10.5012/bkcs.2007.28.1.125