DOI QR코드

DOI QR Code

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Soo-Jae (Department of Molecular Biotechnology, Konkuk University) ;
  • Lee, Jung-Rok (Institute of Biomedical Science and Technology, Konkuk University) ;
  • Kim, Kwang-Pyo (Institute of Biomedical Science and Technology, Konkuk University)
  • Accepted : 2008.02.25
  • Published : 2008.03.31

Abstract

Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.

Keywords

References

  1. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87, 1620-1624. https://doi.org/10.1073/pnas.87.4.1620
  2. Ischiropoulos, H., Zhu, L. and Beckman, J. S. (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298, 446-451 https://doi.org/10.1016/0003-9861(92)90433-W
  3. Barnes, P. J., Shapiro, S. D. and Pauwels, R. A. (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J. 22, 672-688 https://doi.org/10.1183/09031936.03.00040703
  4. Stadtman, E. R. and Berlett, B. S. (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug. Metab. Rev. 30, 225-243 https://doi.org/10.3109/03602539808996310
  5. Goodwin, D. C., Gunther, M. R., Hsi, L. C., Crews, B. C., Eling, T. E., Mason, R. P. and Marnett, L. J. (1998) Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J. Biol. Chem. 273, 8903-8909 https://doi.org/10.1074/jbc.273.15.8903
  6. Sturgeon, B. E., Glover, R. E., Chen, Y. R., Burka, L. T. and Mason, R. P. (2001) Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine. J. Biol. Chem. 276, 45516-45521 https://doi.org/10.1074/jbc.M106835200
  7. Chen, Y. R., Chen, C. L., Chen, W., Zweier, J. L., Augusto, O., Radi, R. and Mason, R. P. (2004) Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J. Biol. Chem. 279, 18054-18062 https://doi.org/10.1074/jbc.M307706200
  8. Lee, S. J., Lee, J. R., Kim, Y. H., Park, Y. S., Park, S. I., Park, H. S. and Kim, K. P. (2007) Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2797-2804 https://doi.org/10.1002/rcm.3145
  9. Sokolovsky, M., Riordan, J. F. and Vallee, B. L. (1967) Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. Biochem. Biophys. Res. Commun. 27, 20-25 https://doi.org/10.1016/S0006-291X(67)80033-0
  10. Eu, J. P., Liu, L., Zeng, M. and Stamler, J. S. (2000) An apoptotic model for nitrosative stress. Biochemistry 39, 1040-1047 https://doi.org/10.1021/bi992046e
  11. Ignarro, L. J. (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30, 535-560 https://doi.org/10.1146/annurev.pa.30.040190.002535
  12. Beckman, J. S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836-844 https://doi.org/10.1021/tx9501445
  13. Beckman, J. S. and Koppenol, W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424-1437 https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  14. Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250
  15. Ferrer-Sueta, G., Quijano, C., Alvarez, B. and Radi, R. (2002) Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol. 349, 23-37 https://doi.org/10.1016/S0076-6879(02)49318-4
  16. Bonini, M. G., Radi, R., Ferrer-Sueta, G., Ferreira, A. M. and Augusto, O. (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J. Biol. Chem. 274, 10802-10806 https://doi.org/10.1074/jbc.274.16.10802
  17. Gow, A., Duran, D., Thom, S. R. and Ischiropoulos, H. (1996) Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys. 333, 42-48 https://doi.org/10.1006/abbi.1996.0362
  18. Brennan, M. L., Wu, W., Fu, X., Shen, Z., Song, W., Frost, H., Vadseth, C., Narine, L., Lenkiewicz, E., Borchers, M. T., Lusis, A. J., Lee, J. J., Lee, N. A., Abu-Soud, H. M., Ischiropoulos, H. and Hazen, S. L. (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 277, 17415-17427 https://doi.org/10.1074/jbc.M112400200
  19. Klebanoff, S. J. (1993) Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free. Radic. Biol. Med. 14, 351-360 https://doi.org/10.1016/0891-5849(93)90084-8
  20. Shao, B., Bergt, C., Fu, X., Green, P., Voss, J. C., Oda, M. N., Oram, J. F. and Heinecke, J. W. (2005) Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983-5993 https://doi.org/10.1074/jbc.M411484200
  21. Sokolovsky, M., Riordan, J. F. and Vallee, B. L. (1966) Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry 5, 3582-3589 https://doi.org/10.1021/bi00875a029
  22. Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C., Smith, C. D. and Beckman, J. S. (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431-437 https://doi.org/10.1016/0003-9861(92)90431-U
  23. Zhan, X. and Desiderio, D. M. (2006) Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 354, 279-289 https://doi.org/10.1016/j.ab.2006.05.024
  24. Ischiropoulos, H. (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun. 305, 776-783 https://doi.org/10.1016/S0006-291X(03)00814-3
  25. Greenacre, S. A. and Ischiropoulos, H. (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free. Radic. Res. 34, 541-581 https://doi.org/10.1080/10715760100300471
  26. Turko, I. V. and Murad, F. (2002) Protein nitration in cardiovascular diseases. Pharmacol. Rev. 54, 619-634 https://doi.org/10.1124/pr.54.4.619
  27. Willy, P. J., Kobayashi, R. and Kadonaga, J. T. (2000) A basal transcription factor that activates or represses transcription. Science 290, 982-985 https://doi.org/10.1126/science.290.5493.982
  28. MacMillan-Crow, L. A., Crow, J. P. and Thompson, J. A. (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37, 1613-1622 https://doi.org/10.1021/bi971894b
  29. Yamakura, F., Taka, H., Fujimura, T. and Murayama, K. (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J. Biol. Chem. 273, 14085-14089 https://doi.org/10.1074/jbc.273.23.14085
  30. Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S. and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371, 169-178 https://doi.org/10.1006/abbi.1999.1480
  31. Sacksteder, C. A., Qian, W. J., Knyushko, T. V., Wang, H., Chin, M. H., Lacan, G., Melega, W. P., Camp, D. G., 2nd, Smith, R. D., Smith, D. J., Squier, T. C. and Bigelow, D. J. (2006) Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45, 8009-8022 https://doi.org/10.1021/bi060474w
  32. Kamikawa-Miyado, M., Ogi, H., Ogino, Y., Katoh, H., Suzuki, K., Uemura, M., Kitoh, J., Oda, S. and Yamada, G. (2005) The morphological and histological characters of the male external genitalia of the house musk shrew, Suncus murinus. Zoolog. Sci. 22, 463-468 https://doi.org/10.2108/zsj.22.463
  33. Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-599 https://doi.org/10.1038/258598a0
  34. Leitner, A. and Lindner, W. (2006) Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics. Proteomics 6, 5418-5434 https://doi.org/10.1002/pmic.200600255
  35. Oda, Y., Owa, T., Sato, T., Boucher, B., Daniels, S., Yamanaka, H., Shinohara, Y., Yokoi, A., Kuromitsu, J. and Nagasu, T. (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159-2165 https://doi.org/10.1021/ac026196y
  36. Sethuraman, M., McComb, M. E., Huang, H., Huang, S., Heibeck, T., Costello, C. E. and Cohen, R. A. (2004) Isotopecoded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J. Proteome. Res. 3, 1228-1233 https://doi.org/10.1021/pr049887e
  37. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994-999 https://doi.org/10.1038/13690
  38. Zhou, H., Ranish, J. A., Watts, J. D. and Aebersold, R. (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20, 512-515 https://doi.org/10.1038/nbt0502-512
  39. Liu, T., Qian, W. J., Strittmatter, E. F., Camp, D. G., 2nd, Anderson, G. A., Thrall, B. D. and Smith, R. D. (2004) High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal. Chem. 76, 5345-5353 https://doi.org/10.1021/ac049485q
  40. Brittain, S. M., Ficarro, S. B., Brock, A. and Peters, E. C. (2005) Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat. Biotechnol. 23, 463-468 https://doi.org/10.1038/nbt1076
  41. Luo, Z., Zhang, Q., Oderaotoshi, Y. and Curran, D. P. (2001) Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 291, 1766-1769 https://doi.org/10.1126/science.1057567
  42. Kuyama, H., Watanabe, M., Toda, C., Ando, E., Tanaka, K. and Nishimura, O. (2003) An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom. 17, 1642-1650 https://doi.org/10.1002/rcm.1100
  43. Matsuo, E., Toda, C., Watanabe, M., Iida, T., Masuda, T., Minohata, T., Ando, E., Tsunasawa, S. and Nishimura, O. (2006) Improved 2-nitrobenzenesulfenyl method: optimization of the protocol and improved enrichment for labeled peptides. Rapid Commun. Mass Spectrom. 20, 31-38 https://doi.org/10.1002/rcm.2262
  44. Gevaert, K., Van Damme, P., Martens, L. and Vandekerckhove, J. (2005) Diagonal reverse-phase chromatography applications in peptide-centric proteomics: ahead of catalogueomics? Anal. Biochem. 345, 18-29 https://doi.org/10.1016/j.ab.2005.01.038
  45. Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G. R. and Vandekerckhove, J. (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566-569 https://doi.org/10.1038/nbt810
  46. Hinsby, A. M., Olsen, J. V. and Mann, M. (2004) Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J. Biol. Chem. 279, 46438-46447 https://doi.org/10.1074/jbc.M404537200
  47. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F. and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301-305 https://doi.org/10.1038/nbt0302-301
  48. Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B. and Heck, A. J. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2DNanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935-3943 https://doi.org/10.1021/ac0498617
  49. Oda, Y., Nagasu, T. and Chait, B. T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379-382 https://doi.org/10.1038/86783
  50. Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., Kasai, K., Takahashi, N. and Isobe, T. (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667-672 https://doi.org/10.1038/nbt829
  51. Zhang, H., Li, X. J., Martin, D. B. and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660-666 https://doi.org/10.1038/nbt827
  52. Xu, F., Wang, Y., Wang, X., Zhang, Y., Tang, Y. and Yang, P. (2003) A novel hierarchical nanozeolite composite as sorbent for protein separation in Immobilized Metal-Ion Affinity Chromatography. Adv. Mater. 15, 1751-1753 https://doi.org/10.1002/adma.200305287
  53. Zhang, Y., Wang, X., Shan, W., Wu, B., Fan, H., Yu, X., Tang, Y. and Yang, P. (2005) Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. Int. Ed. Engl. 44, 615-617 https://doi.org/10.1002/anie.200460741
  54. Jia, W., Chen, X., Lu, H. and Yang, P. (2006) CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew. Chem. Int. Ed. Engl. 45, 3345-3349 https://doi.org/10.1002/anie.200503485
  55. Crowley, J. R., Yarasheski, K., Leeuwenburgh, C., Turk, J. and Heinecke, J. W. (1998) Isotope dilution mass spectrometric quantification of 3-nitrotyrosine in proteins and tissues is facilitated by reduction to 3-aminotyrosine. Anal. Biochem. 259, 127-135 https://doi.org/10.1006/abio.1998.2635
  56. Nikov, G., Bhat, V., Wishnok, J. S. and Tannenbaum, S. R. (2003) Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry. Anal. Biochem. 320, 214-222 https://doi.org/10.1016/S0003-2697(03)00359-2
  57. Zhang, Q., Qian, W. J., Knyushko, T. V., Clauss, T. R., Purvine, S. O., Moore, R. J., Sacksteder, C. A., Chin, M. H., Smith, D. J., Camp, D. G., 2nd, Bigelow, D. J. and Smith, R. D. (2007) A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J. Proteome. Res. 6, 2257-2268 https://doi.org/10.1021/pr0606934
  58. Good, P. F., Hsu, A., Werner, P., Perl, D. P. and Olanow, C. W. (1998) Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57, 338-342 https://doi.org/10.1097/00005072-199804000-00006
  59. Dremina, E. S., Sharov, V. S. and Schoneich, C. (2005) Protein tyrosine nitration in rat brain is associated with raft proteins, flotillin-1 and alpha-tubulin: effect of biological aging. J. Neurochem. 93, 1262-1271 https://doi.org/10.1111/j.1471-4159.2005.03115.x
  60. Zhan, X. and Desiderio, D. M. (2004) The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry. Biochem. Biophys. Res. Commun. 325, 1180-1186 https://doi.org/10.1016/j.bbrc.2004.10.169
  61. Tedeschi, G., Cappelletti, G., Negri, A., Pagliato, L., Maggioni, M. G., Maci, R. and Ronchi, S. (2005) Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: identification of two nitration sites in alpha-tubulin. Proteomics 5, 2422-2432 https://doi.org/10.1002/pmic.200401208
  62. Turko, I. V. and Murad, F. (2005) Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry. Methods. Enzymol. 396, 266-275 https://doi.org/10.1016/S0076-6879(05)96023-0
  63. Park, S. W., Huq, M. D., Hu, X. and Wei, L. N. (2005) Tyrosine nitration on p65: a novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol. Cell. Proteomics 4, 300-309 https://doi.org/10.1074/mcp.M400195-MCP200
  64. Petersson, A. S., Steen, H., Kalume, D. E., Caidahl, K. and Roepstorff, P. (2001) Investigation of tyrosine nitration in proteins by mass spectrometry. J. Mass Spectrom. 36, 616-625 https://doi.org/10.1002/jms.161
  65. Santrucek, J., Strohalm, M., Kadlcik, V., Hynek, R. and Kodicek, M. (2004) Tyrosine residues modification studied by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323, 1151-1156 https://doi.org/10.1016/j.bbrc.2004.08.214
  66. Reynolds, M. R., Berry, R. W. and Binder, L. I. (2005) Site-specific nitration differentially influences tau assembly in vitro. Biochemistry 44, 13997-14009 https://doi.org/10.1021/bi051028w
  67. Sarver, A., Scheffler, N. K., Shetlar, M. D. and Gibson, B. W. (2001) Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 439-448 https://doi.org/10.1016/S1044-0305(01)00213-6
  68. Borges, C. R., Kuhn, D. M. and Watson, J. T. (2003) Mass mapping sites of nitration in tyrosine hydroxylase: random vs selective nitration of three tyrosine residues. Chem. Res. Toxicol. 16, 536-540 https://doi.org/10.1021/tx0256681
  69. Pacher, P., Beckman, J. S. and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424 https://doi.org/10.1152/physrev.00029.2006
  70. Nowak, P., Kolodziejczyk, J. and Wachowicz, B. (2004) Peroxynitrite and fibrinolytic system: the effect of peroxynitrite on plasmin activity. Mol. Cell. Biochem. 267, 141-146 https://doi.org/10.1023/B:MCBI.0000049370.23457.10
  71. Nielsen, V. G., Crow, J. P., Mogal, A., Zhou, F. and Parks, D. A. (2004) Peroxynitrite decreases hemostasis in human plasma in vitro. Anesth. Analg. 99, 21-26 https://doi.org/10.1213/01.ANE.0000116962.93953.70
  72. Cobbs, C. S., Whisenhunt, T. R., Wesemann, D. R., Harkins, L. E., Van Meir, E. G. and Samanta, M. (2003) Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63, 8670-8673
  73. Haqqani, A. S., Kelly, J. F. and Birnboim, H. C. (2002) Selective nitration of histone tyrosine residues in vivo in mutatect tumors. J. Biol. Chem. 277, 3614-3621 https://doi.org/10.1074/jbc.M105730200
  74. Yamakura, F., Matsumoto, T., Ikeda, K., Taka, H., Fujimura, T., Murayama, K., Watanabe, E., Tamaki, M., Imai, T. and Takamori, K. (2005) Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. J. Biochem. 138, 57-69 https://doi.org/10.1093/jb/mvi095
  75. Lanone, S., Manivet, P., Callebert, J., Launay, J. M., Payen, D., Aubier, M., Boczkowski, J. and Mebazaa, A. (2002) Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem. J. 366, 399-404 https://doi.org/10.1042/BJ20020339
  76. Aoyama, K., Matsubara, K., Fujikawa, Y., Nagahiro, Y., Shimizu, K., Umegae, N., Hayase, N., Shiono, H. and Kobayashi, S. (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann. Neurol. 47, 524-527 https://doi.org/10.1002/1531-8249(200004)47:4<524::AID-ANA19>3.0.CO;2-5
  77. Banan, A., Fields, J. Z., Decker, H., Zhang, Y. and Keshavarzian, A. (2000) Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J. Pharmacol. Exp. Ther. 294, 997-1008
  78. Neumann, P., Gertzberg, N., Vaughan, E., Weisbrot, J., Woodburn, R., Lambert, W. and Johnson, A. (2006) Peroxynitrite mediates TNF-alpha-induced endothelial barrier dysfunction and nitration of actin. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L674-L684 https://doi.org/10.1152/ajplung.00391.2005
  79. Zhu, S., Basiouny, K. F., Crow, J. P. and Matalon, S. (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L1025-1031 https://doi.org/10.1152/ajplung.2000.278.5.L1025
  80. Saeki, M. and Maeda, S. (1999) p130cas is a cellular target protein for tyrosine nitration induced by peroxynitrite. Neurosci. Res. 33, 325-328 https://doi.org/10.1016/S0168-0102(99)00019-X
  81. Kasina, S., Rizwani, W., Radhika, K. V. and Singh, S. S. (2005) Nitration of profilin effects its interaction with poly (L-proline) and actin. J. Biochem. (Tokyo). 138, 687-695 https://doi.org/10.1093/jb/mvi163
  82. Nomiyama, T., Igarashi, Y., Taka, H., Mineki, R., Uchida, T., Ogihara, T., Choi, J. B., Uchino, H., Tanaka, Y., Maegawa, H., Kashiwagi, A., Murayama, K., Kawamori, R. and Watada, H. (2004) Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem. Biophys. Res. Commun. 320, 639-647 https://doi.org/10.1016/j.bbrc.2004.06.019
  83. Berlett, B. S., Levine, R. L. and Stadtman, E. R. (1998) Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc. Natl. Acad. Sci. U. S. A. 95, 2784-2789 https://doi.org/10.1073/pnas.95.6.2784
  84. Barnham, K. J., Masters, C. L. and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205-214 https://doi.org/10.1038/nrd1330
  85. Reynolds, M. R., Berry, R. W. and Binder, L. I. (2005) Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease. Biochemistry 44, 1690-1700 https://doi.org/10.1021/bi047982v
  86. Castegna, A., Thongboonkerd, V., Klein, J. B., Lynn, B., Markesbery, W. R. and Butterfield, D. A. (2003) Proteomic identification of nitrated proteins in Alzheimer's disease brain. J. Neurochem. 85, 1394-1401 https://doi.org/10.1046/j.1471-4159.2003.01786.x
  87. Fukumoto, K., Pierro, A., Zammit, V. A., Spitz, L. and Eaton, S. (2004) Tyrosine nitration of carnitine palmitoyl transferase I during endotoxaemia in suckling rats. Biochim. Biophys. Acta. 1683, 1-6 https://doi.org/10.1016/j.bbalip.2004.03.006
  88. Kanski, J., Behring, A., Pelling, J. and Schoneich, C. (2005) Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am. J. Physiol. Heart Circ. Physiol. 288, H371-381 https://doi.org/10.1152/ajpheart.01030.2003
  89. Buchczyk, D. P., Grune, T., Sies, H. and Klotz, L. O. (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol. Chem. 384, 237-241 https://doi.org/10.1515/BC.2003.026
  90. Forsmark-Andree, P., Persson, B., Radi, R., Dallner, G. and Ernster, L. (1996) Oxidative modification of nicotinamide nucleotide transhydrogenase in submitochondrial particles: effect of endogenous ubiquinol. Arch. Biochem. Biophys. 336, 113-120 https://doi.org/10.1006/abbi.1996.0538
  91. Jang, B. and Han, S. (2006) Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie 88, 53-58 https://doi.org/10.1016/j.biochi.2005.06.016
  92. Radi, R., Cassina, A., Hodara, R., Quijano, C. and Castro, L. (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451-1464 https://doi.org/10.1016/S0891-5849(02)01111-5
  93. Gutierrez-Martin, Y., Martin-Romero, F. J., Inesta-Vaquera, F. A., Gutierrez-Merino, C. and Henao, F. (2004) Modulation of sarcoplasmic reticulum Ca(2+)-ATPase by chronic and acute exposure to peroxynitrite. Eur. J. Biochem. 271, 2647-2657 https://doi.org/10.1111/j.1432-1033.2004.04193.x
  94. Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R. and Bauer, J. A. (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104, 174-180 https://doi.org/10.1161/01.CIR.104.2.174
  95. Crow, J. P., Ye, Y. Z., Strong, M., Kirk, M., Barnes, S. and Beckman, J. S. (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 69, 1945-1953 https://doi.org/10.1046/j.1471-4159.1997.69051945.x
  96. Bachschmid, M., Thurau, S., Zou, M. H. and Ullrich, V. (2003) Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. FASEB J. 17, 914-916 https://doi.org/10.1096/fj.02-0530fje

Cited by

  1. Watching the watcher: regulation of p53 by mitochondria vol.5, pp.1, 2009, https://doi.org/10.2217/14796694.5.1.117
  2. Supplemental L-arginine and vitamins E and C preserve xanthine oxidase activity in the lung of broiler chickens grown under hypobaric hypoxia vol.93, pp.4, 2014, https://doi.org/10.3382/ps.2013-03698
  3. Mass Spectrometry Analysis of In Vitro Nitration of Carbonic Anhydrase II vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.709
  4. 3-Nitrotyrosine quantification methods: Current concepts and future challenges vol.125, 2016, https://doi.org/10.1016/j.biochi.2016.02.011
  5. Endogenous 3,4-Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine vol.9, pp.6, 2010, https://doi.org/10.1074/mcp.M900321-MCP200
  6. Nitrated Proteome in Human Embryonic Stem Cells vol.7, pp.4, 2016, https://doi.org/10.5478/MSL.2016.7.4.85
  7. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays vol.12, pp.4, 2015, https://doi.org/10.1586/14789450.2015.1050384
  8. Proteomic Approaches to Analyze Protein Tyrosine Nitration vol.19, pp.11, 2013, https://doi.org/10.1089/ars.2012.5058
  9. Mass spectrometry analysis of nitrotyrosine-containing proteins vol.34, pp.4, 2015, https://doi.org/10.1002/mas.21413
  10. Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0126279
  11. Functional Aspects of Redox Control During Neuroinflammation vol.13, pp.2, 2010, https://doi.org/10.1089/ars.2009.2629
  12. Biochemical and histological evaluations of anti-inflammatory and antioxidant p-chloro-selenosteroid actions in acute murine models of inflammation vol.781, 2016, https://doi.org/10.1016/j.ejphar.2016.03.051
  13. Analysis of nitrated proteins inSaccharomyces cerevisiaeinvolved in mating signal transduction vol.15, pp.2-3, 2015, https://doi.org/10.1002/pmic.201400172
  14. Identification of tyrosine nitration in UCH-L1 and GAPDH vol.32, pp.13, 2011, https://doi.org/10.1002/elps.201100133
  15. Oxidative and Nitrosative Stress Markers in Patients on Hemodialysis and Peritoneal Dialysis vol.32, pp.3, 2011, https://doi.org/10.1159/000328030
  16. Diabetic Retinopathy Is Associated with Decreased Tyrosine Nitrosylation of Vitreous Interleukins IL-1α, IL-1β, and IL-7 vol.46, pp.4, 2011, https://doi.org/10.1159/000323812
  17. Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats vol.47, pp.4, 2009, https://doi.org/10.1016/j.fct.2009.01.004
  18. Oxidative stress markers in laparoscopic versus open colectomy for cancer: a double-blind randomized study vol.27, pp.7, 2013, https://doi.org/10.1007/s00464-013-2788-8
  19. Redox proteomics and drug development vol.74, pp.12, 2011, https://doi.org/10.1016/j.jprot.2011.01.001
  20. Identification of possible cigarette smoke constituents responsible for muscle catabolism vol.33, pp.3-4, 2012, https://doi.org/10.1007/s10974-012-9299-4
  21. Mass Spectrometry Analysis for Nitration of Proteins vol.33, pp.2, 2013, https://doi.org/10.7599/hmr.2013.33.2.110
  22. Enzyme immunoassay for detection of protein-bound nitrotyrosine in brain tissue and cerebrospinal fluid: Methodological issues vol.6, pp.3, 2012, https://doi.org/10.1134/S1819712412030063
  23. Pituitary Adenoma Nitroproteomics: Current Status and Perspectives vol.2013, 2013, https://doi.org/10.1155/2013/580710
  24. Computational study of the effects of protein tyrosine nitrations on the catalytic activity of human thymidylate synthase vol.27, pp.1, 2013, https://doi.org/10.1007/s10822-012-9624-4
  25. In Vitroandin VivoProtein-bound Tyrosine Nitration Characterized by Diagonal Chromatography vol.8, pp.12, 2009, https://doi.org/10.1074/mcp.M900259-MCP200
  26. Mass spectrometry and redox proteomics: Applications in disease vol.33, pp.4, 2014, https://doi.org/10.1002/mas.21374
  27. Proteases That Can Distinguish among Different Post-translational Forms of Tyrosine Engineered Using Multicolor Flow Cytometry vol.131, pp.50, 2009, https://doi.org/10.1021/ja907803k
  28. Alterations in connexin 43 during diabetic cardiomyopathy: Competition of tyrosine nitration versus phosphorylation 在糖尿病心肌病中间隙连接蛋白43的变化:酪氨酸硝化作用与磷酸化作用的竞争 vol.7, pp.2, 2015, https://doi.org/10.1111/1753-0407.12164
  29. Methotrexate administration induces differential and selective protein tyrosine nitration and cysteine nitrosylation in the subcellular organelles of the small intestinal mucosa of rats vol.251, 2016, https://doi.org/10.1016/j.cbi.2016.03.032
  30. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis vol.32, pp.8, 2009, https://doi.org/10.1007/s12272-009-1802-0
  31. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity vol.13, pp.1, 2010, https://doi.org/10.1097/MCO.0b013e328333b829
  32. Oxidative stress, protein modification and Alzheimer disease vol.133, 2017, https://doi.org/10.1016/j.brainresbull.2016.06.005
  33. Relevance of peroxynitrite formation and 3-nitrotyrosine on spermatozoa physiology vol.1, pp.4, 2016, https://doi.org/10.1016/j.pbj.2016.07.004