References
- Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87, 1620-1624. https://doi.org/10.1073/pnas.87.4.1620
- Ischiropoulos, H., Zhu, L. and Beckman, J. S. (1992) Peroxynitrite formation from macrophage-derived nitric oxide. Arch. Biochem. Biophys. 298, 446-451 https://doi.org/10.1016/0003-9861(92)90433-W
- Barnes, P. J., Shapiro, S. D. and Pauwels, R. A. (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur. Respir. J. 22, 672-688 https://doi.org/10.1183/09031936.03.00040703
- Stadtman, E. R. and Berlett, B. S. (1998) Reactive oxygen-mediated protein oxidation in aging and disease. Drug. Metab. Rev. 30, 225-243 https://doi.org/10.3109/03602539808996310
- Goodwin, D. C., Gunther, M. R., Hsi, L. C., Crews, B. C., Eling, T. E., Mason, R. P. and Marnett, L. J. (1998) Nitric oxide trapping of tyrosyl radicals generated during prostaglandin endoperoxide synthase turnover. Detection of the radical derivative of tyrosine 385. J. Biol. Chem. 273, 8903-8909 https://doi.org/10.1074/jbc.273.15.8903
- Sturgeon, B. E., Glover, R. E., Chen, Y. R., Burka, L. T. and Mason, R. P. (2001) Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine. J. Biol. Chem. 276, 45516-45521 https://doi.org/10.1074/jbc.M106835200
- Chen, Y. R., Chen, C. L., Chen, W., Zweier, J. L., Augusto, O., Radi, R. and Mason, R. P. (2004) Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J. Biol. Chem. 279, 18054-18062 https://doi.org/10.1074/jbc.M307706200
- Lee, S. J., Lee, J. R., Kim, Y. H., Park, Y. S., Park, S. I., Park, H. S. and Kim, K. P. (2007) Investigation of tyrosine nitration and nitrosylation of angiotensin II and bovine serum albumin with electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2797-2804 https://doi.org/10.1002/rcm.3145
- Sokolovsky, M., Riordan, J. F. and Vallee, B. L. (1967) Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. Biochem. Biophys. Res. Commun. 27, 20-25 https://doi.org/10.1016/S0006-291X(67)80033-0
- Eu, J. P., Liu, L., Zeng, M. and Stamler, J. S. (2000) An apoptotic model for nitrosative stress. Biochemistry 39, 1040-1047 https://doi.org/10.1021/bi992046e
- Ignarro, L. J. (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30, 535-560 https://doi.org/10.1146/annurev.pa.30.040190.002535
- Beckman, J. S. (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9, 836-844 https://doi.org/10.1021/tx9501445
- Beckman, J. S. and Koppenol, W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424-1437 https://doi.org/10.1152/ajpcell.1996.271.5.C1424
- Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250
- Ferrer-Sueta, G., Quijano, C., Alvarez, B. and Radi, R. (2002) Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol. 349, 23-37 https://doi.org/10.1016/S0076-6879(02)49318-4
- Bonini, M. G., Radi, R., Ferrer-Sueta, G., Ferreira, A. M. and Augusto, O. (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J. Biol. Chem. 274, 10802-10806 https://doi.org/10.1074/jbc.274.16.10802
- Gow, A., Duran, D., Thom, S. R. and Ischiropoulos, H. (1996) Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. Arch. Biochem. Biophys. 333, 42-48 https://doi.org/10.1006/abbi.1996.0362
- Brennan, M. L., Wu, W., Fu, X., Shen, Z., Song, W., Frost, H., Vadseth, C., Narine, L., Lenkiewicz, E., Borchers, M. T., Lusis, A. J., Lee, J. J., Lee, N. A., Abu-Soud, H. M., Ischiropoulos, H. and Hazen, S. L. (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 277, 17415-17427 https://doi.org/10.1074/jbc.M112400200
- Klebanoff, S. J. (1993) Reactive nitrogen intermediates and antimicrobial activity: role of nitrite. Free. Radic. Biol. Med. 14, 351-360 https://doi.org/10.1016/0891-5849(93)90084-8
- Shao, B., Bergt, C., Fu, X., Green, P., Voss, J. C., Oda, M. N., Oram, J. F. and Heinecke, J. W. (2005) Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983-5993 https://doi.org/10.1074/jbc.M411484200
- Sokolovsky, M., Riordan, J. F. and Vallee, B. L. (1966) Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry 5, 3582-3589 https://doi.org/10.1021/bi00875a029
- Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C., Smith, C. D. and Beckman, J. S. (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431-437 https://doi.org/10.1016/0003-9861(92)90431-U
- Zhan, X. and Desiderio, D. M. (2006) Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 354, 279-289 https://doi.org/10.1016/j.ab.2006.05.024
- Ischiropoulos, H. (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem. Biophys. Res. Commun. 305, 776-783 https://doi.org/10.1016/S0006-291X(03)00814-3
- Greenacre, S. A. and Ischiropoulos, H. (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free. Radic. Res. 34, 541-581 https://doi.org/10.1080/10715760100300471
- Turko, I. V. and Murad, F. (2002) Protein nitration in cardiovascular diseases. Pharmacol. Rev. 54, 619-634 https://doi.org/10.1124/pr.54.4.619
- Willy, P. J., Kobayashi, R. and Kadonaga, J. T. (2000) A basal transcription factor that activates or represses transcription. Science 290, 982-985 https://doi.org/10.1126/science.290.5493.982
- MacMillan-Crow, L. A., Crow, J. P. and Thompson, J. A. (1998) Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37, 1613-1622 https://doi.org/10.1021/bi971894b
- Yamakura, F., Taka, H., Fujimura, T. and Murayama, K. (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J. Biol. Chem. 273, 14085-14089 https://doi.org/10.1074/jbc.273.23.14085
- Souza, J. M., Daikhin, E., Yudkoff, M., Raman, C. S. and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371, 169-178 https://doi.org/10.1006/abbi.1999.1480
- Sacksteder, C. A., Qian, W. J., Knyushko, T. V., Wang, H., Chin, M. H., Lacan, G., Melega, W. P., Camp, D. G., 2nd, Smith, R. D., Smith, D. J., Squier, T. C. and Bigelow, D. J. (2006) Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45, 8009-8022 https://doi.org/10.1021/bi060474w
- Kamikawa-Miyado, M., Ogi, H., Ogino, Y., Katoh, H., Suzuki, K., Uemura, M., Kitoh, J., Oda, S. and Yamada, G. (2005) The morphological and histological characters of the male external genitalia of the house musk shrew, Suncus murinus. Zoolog. Sci. 22, 463-468 https://doi.org/10.2108/zsj.22.463
- Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598-599 https://doi.org/10.1038/258598a0
- Leitner, A. and Lindner, W. (2006) Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics. Proteomics 6, 5418-5434 https://doi.org/10.1002/pmic.200600255
- Oda, Y., Owa, T., Sato, T., Boucher, B., Daniels, S., Yamanaka, H., Shinohara, Y., Yokoi, A., Kuromitsu, J. and Nagasu, T. (2003) Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75, 2159-2165 https://doi.org/10.1021/ac026196y
- Sethuraman, M., McComb, M. E., Huang, H., Huang, S., Heibeck, T., Costello, C. E. and Cohen, R. A. (2004) Isotopecoded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J. Proteome. Res. 3, 1228-1233 https://doi.org/10.1021/pr049887e
- Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994-999 https://doi.org/10.1038/13690
- Zhou, H., Ranish, J. A., Watts, J. D. and Aebersold, R. (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol. 20, 512-515 https://doi.org/10.1038/nbt0502-512
- Liu, T., Qian, W. J., Strittmatter, E. F., Camp, D. G., 2nd, Anderson, G. A., Thrall, B. D. and Smith, R. D. (2004) High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal. Chem. 76, 5345-5353 https://doi.org/10.1021/ac049485q
- Brittain, S. M., Ficarro, S. B., Brock, A. and Peters, E. C. (2005) Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry. Nat. Biotechnol. 23, 463-468 https://doi.org/10.1038/nbt1076
- Luo, Z., Zhang, Q., Oderaotoshi, Y. and Curran, D. P. (2001) Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 291, 1766-1769 https://doi.org/10.1126/science.1057567
- Kuyama, H., Watanabe, M., Toda, C., Ando, E., Tanaka, K. and Nishimura, O. (2003) An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom. 17, 1642-1650 https://doi.org/10.1002/rcm.1100
- Matsuo, E., Toda, C., Watanabe, M., Iida, T., Masuda, T., Minohata, T., Ando, E., Tsunasawa, S. and Nishimura, O. (2006) Improved 2-nitrobenzenesulfenyl method: optimization of the protocol and improved enrichment for labeled peptides. Rapid Commun. Mass Spectrom. 20, 31-38 https://doi.org/10.1002/rcm.2262
- Gevaert, K., Van Damme, P., Martens, L. and Vandekerckhove, J. (2005) Diagonal reverse-phase chromatography applications in peptide-centric proteomics: ahead of catalogueomics? Anal. Biochem. 345, 18-29 https://doi.org/10.1016/j.ab.2005.01.038
- Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G. R. and Vandekerckhove, J. (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566-569 https://doi.org/10.1038/nbt810
- Hinsby, A. M., Olsen, J. V. and Mann, M. (2004) Tyrosine phosphoproteomics of fibroblast growth factor signaling: a role for insulin receptor substrate-4. J. Biol. Chem. 279, 46438-46447 https://doi.org/10.1074/jbc.M404537200
- Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F. and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301-305 https://doi.org/10.1038/nbt0302-301
- Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B. and Heck, A. J. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2DNanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 76, 3935-3943 https://doi.org/10.1021/ac0498617
- Oda, Y., Nagasu, T. and Chait, B. T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379-382 https://doi.org/10.1038/86783
- Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., Kasai, K., Takahashi, N. and Isobe, T. (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol. 21, 667-672 https://doi.org/10.1038/nbt829
- Zhang, H., Li, X. J., Martin, D. B. and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660-666 https://doi.org/10.1038/nbt827
- Xu, F., Wang, Y., Wang, X., Zhang, Y., Tang, Y. and Yang, P. (2003) A novel hierarchical nanozeolite composite as sorbent for protein separation in Immobilized Metal-Ion Affinity Chromatography. Adv. Mater. 15, 1751-1753 https://doi.org/10.1002/adma.200305287
- Zhang, Y., Wang, X., Shan, W., Wu, B., Fan, H., Yu, X., Tang, Y. and Yang, P. (2005) Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem. Int. Ed. Engl. 44, 615-617 https://doi.org/10.1002/anie.200460741
- Jia, W., Chen, X., Lu, H. and Yang, P. (2006) CaCO3-poly(methyl methacrylate) nanoparticles for fast enrichment of low-abundance peptides followed by CaCO3-core removal for MALDI-TOF MS analysis. Angew. Chem. Int. Ed. Engl. 45, 3345-3349 https://doi.org/10.1002/anie.200503485
- Crowley, J. R., Yarasheski, K., Leeuwenburgh, C., Turk, J. and Heinecke, J. W. (1998) Isotope dilution mass spectrometric quantification of 3-nitrotyrosine in proteins and tissues is facilitated by reduction to 3-aminotyrosine. Anal. Biochem. 259, 127-135 https://doi.org/10.1006/abio.1998.2635
- Nikov, G., Bhat, V., Wishnok, J. S. and Tannenbaum, S. R. (2003) Analysis of nitrated proteins by nitrotyrosine-specific affinity probes and mass spectrometry. Anal. Biochem. 320, 214-222 https://doi.org/10.1016/S0003-2697(03)00359-2
- Zhang, Q., Qian, W. J., Knyushko, T. V., Clauss, T. R., Purvine, S. O., Moore, R. J., Sacksteder, C. A., Chin, M. H., Smith, D. J., Camp, D. G., 2nd, Bigelow, D. J. and Smith, R. D. (2007) A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. J. Proteome. Res. 6, 2257-2268 https://doi.org/10.1021/pr0606934
- Good, P. F., Hsu, A., Werner, P., Perl, D. P. and Olanow, C. W. (1998) Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57, 338-342 https://doi.org/10.1097/00005072-199804000-00006
- Dremina, E. S., Sharov, V. S. and Schoneich, C. (2005) Protein tyrosine nitration in rat brain is associated with raft proteins, flotillin-1 and alpha-tubulin: effect of biological aging. J. Neurochem. 93, 1262-1271 https://doi.org/10.1111/j.1471-4159.2005.03115.x
- Zhan, X. and Desiderio, D. M. (2004) The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry. Biochem. Biophys. Res. Commun. 325, 1180-1186 https://doi.org/10.1016/j.bbrc.2004.10.169
- Tedeschi, G., Cappelletti, G., Negri, A., Pagliato, L., Maggioni, M. G., Maci, R. and Ronchi, S. (2005) Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: identification of two nitration sites in alpha-tubulin. Proteomics 5, 2422-2432 https://doi.org/10.1002/pmic.200401208
- Turko, I. V. and Murad, F. (2005) Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry. Methods. Enzymol. 396, 266-275 https://doi.org/10.1016/S0076-6879(05)96023-0
- Park, S. W., Huq, M. D., Hu, X. and Wei, L. N. (2005) Tyrosine nitration on p65: a novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol. Cell. Proteomics 4, 300-309 https://doi.org/10.1074/mcp.M400195-MCP200
- Petersson, A. S., Steen, H., Kalume, D. E., Caidahl, K. and Roepstorff, P. (2001) Investigation of tyrosine nitration in proteins by mass spectrometry. J. Mass Spectrom. 36, 616-625 https://doi.org/10.1002/jms.161
- Santrucek, J., Strohalm, M., Kadlcik, V., Hynek, R. and Kodicek, M. (2004) Tyrosine residues modification studied by MALDI-TOF mass spectrometry. Biochem. Biophys. Res. Commun. 323, 1151-1156 https://doi.org/10.1016/j.bbrc.2004.08.214
- Reynolds, M. R., Berry, R. W. and Binder, L. I. (2005) Site-specific nitration differentially influences tau assembly in vitro. Biochemistry 44, 13997-14009 https://doi.org/10.1021/bi051028w
- Sarver, A., Scheffler, N. K., Shetlar, M. D. and Gibson, B. W. (2001) Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 439-448 https://doi.org/10.1016/S1044-0305(01)00213-6
- Borges, C. R., Kuhn, D. M. and Watson, J. T. (2003) Mass mapping sites of nitration in tyrosine hydroxylase: random vs selective nitration of three tyrosine residues. Chem. Res. Toxicol. 16, 536-540 https://doi.org/10.1021/tx0256681
- Pacher, P., Beckman, J. S. and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424 https://doi.org/10.1152/physrev.00029.2006
- Nowak, P., Kolodziejczyk, J. and Wachowicz, B. (2004) Peroxynitrite and fibrinolytic system: the effect of peroxynitrite on plasmin activity. Mol. Cell. Biochem. 267, 141-146 https://doi.org/10.1023/B:MCBI.0000049370.23457.10
- Nielsen, V. G., Crow, J. P., Mogal, A., Zhou, F. and Parks, D. A. (2004) Peroxynitrite decreases hemostasis in human plasma in vitro. Anesth. Analg. 99, 21-26 https://doi.org/10.1213/01.ANE.0000116962.93953.70
- Cobbs, C. S., Whisenhunt, T. R., Wesemann, D. R., Harkins, L. E., Van Meir, E. G. and Samanta, M. (2003) Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63, 8670-8673
- Haqqani, A. S., Kelly, J. F. and Birnboim, H. C. (2002) Selective nitration of histone tyrosine residues in vivo in mutatect tumors. J. Biol. Chem. 277, 3614-3621 https://doi.org/10.1074/jbc.M105730200
- Yamakura, F., Matsumoto, T., Ikeda, K., Taka, H., Fujimura, T., Murayama, K., Watanabe, E., Tamaki, M., Imai, T. and Takamori, K. (2005) Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. J. Biochem. 138, 57-69 https://doi.org/10.1093/jb/mvi095
- Lanone, S., Manivet, P., Callebert, J., Launay, J. M., Payen, D., Aubier, M., Boczkowski, J. and Mebazaa, A. (2002) Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Biochem. J. 366, 399-404 https://doi.org/10.1042/BJ20020339
- Aoyama, K., Matsubara, K., Fujikawa, Y., Nagahiro, Y., Shimizu, K., Umegae, N., Hayase, N., Shiono, H. and Kobayashi, S. (2000) Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann. Neurol. 47, 524-527 https://doi.org/10.1002/1531-8249(200004)47:4<524::AID-ANA19>3.0.CO;2-5
- Banan, A., Fields, J. Z., Decker, H., Zhang, Y. and Keshavarzian, A. (2000) Nitric oxide and its metabolites mediate ethanol-induced microtubule disruption and intestinal barrier dysfunction. J. Pharmacol. Exp. Ther. 294, 997-1008
- Neumann, P., Gertzberg, N., Vaughan, E., Weisbrot, J., Woodburn, R., Lambert, W. and Johnson, A. (2006) Peroxynitrite mediates TNF-alpha-induced endothelial barrier dysfunction and nitration of actin. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L674-L684 https://doi.org/10.1152/ajplung.00391.2005
- Zhu, S., Basiouny, K. F., Crow, J. P. and Matalon, S. (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L1025-1031 https://doi.org/10.1152/ajplung.2000.278.5.L1025
- Saeki, M. and Maeda, S. (1999) p130cas is a cellular target protein for tyrosine nitration induced by peroxynitrite. Neurosci. Res. 33, 325-328 https://doi.org/10.1016/S0168-0102(99)00019-X
- Kasina, S., Rizwani, W., Radhika, K. V. and Singh, S. S. (2005) Nitration of profilin effects its interaction with poly (L-proline) and actin. J. Biochem. (Tokyo). 138, 687-695 https://doi.org/10.1093/jb/mvi163
- Nomiyama, T., Igarashi, Y., Taka, H., Mineki, R., Uchida, T., Ogihara, T., Choi, J. B., Uchino, H., Tanaka, Y., Maegawa, H., Kashiwagi, A., Murayama, K., Kawamori, R. and Watada, H. (2004) Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1. Biochem. Biophys. Res. Commun. 320, 639-647 https://doi.org/10.1016/j.bbrc.2004.06.019
- Berlett, B. S., Levine, R. L. and Stadtman, E. R. (1998) Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylylation. Proc. Natl. Acad. Sci. U. S. A. 95, 2784-2789 https://doi.org/10.1073/pnas.95.6.2784
- Barnham, K. J., Masters, C. L. and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205-214 https://doi.org/10.1038/nrd1330
- Reynolds, M. R., Berry, R. W. and Binder, L. I. (2005) Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease. Biochemistry 44, 1690-1700 https://doi.org/10.1021/bi047982v
- Castegna, A., Thongboonkerd, V., Klein, J. B., Lynn, B., Markesbery, W. R. and Butterfield, D. A. (2003) Proteomic identification of nitrated proteins in Alzheimer's disease brain. J. Neurochem. 85, 1394-1401 https://doi.org/10.1046/j.1471-4159.2003.01786.x
- Fukumoto, K., Pierro, A., Zammit, V. A., Spitz, L. and Eaton, S. (2004) Tyrosine nitration of carnitine palmitoyl transferase I during endotoxaemia in suckling rats. Biochim. Biophys. Acta. 1683, 1-6 https://doi.org/10.1016/j.bbalip.2004.03.006
- Kanski, J., Behring, A., Pelling, J. and Schoneich, C. (2005) Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging. Am. J. Physiol. Heart Circ. Physiol. 288, H371-381 https://doi.org/10.1152/ajpheart.01030.2003
- Buchczyk, D. P., Grune, T., Sies, H. and Klotz, L. O. (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol. Chem. 384, 237-241 https://doi.org/10.1515/BC.2003.026
- Forsmark-Andree, P., Persson, B., Radi, R., Dallner, G. and Ernster, L. (1996) Oxidative modification of nicotinamide nucleotide transhydrogenase in submitochondrial particles: effect of endogenous ubiquinol. Arch. Biochem. Biophys. 336, 113-120 https://doi.org/10.1006/abbi.1996.0538
- Jang, B. and Han, S. (2006) Biochemical properties of cytochrome c nitrated by peroxynitrite. Biochimie 88, 53-58 https://doi.org/10.1016/j.biochi.2005.06.016
- Radi, R., Cassina, A., Hodara, R., Quijano, C. and Castro, L. (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med. 33, 1451-1464 https://doi.org/10.1016/S0891-5849(02)01111-5
- Gutierrez-Martin, Y., Martin-Romero, F. J., Inesta-Vaquera, F. A., Gutierrez-Merino, C. and Henao, F. (2004) Modulation of sarcoplasmic reticulum Ca(2+)-ATPase by chronic and acute exposure to peroxynitrite. Eur. J. Biochem. 271, 2647-2657 https://doi.org/10.1111/j.1432-1033.2004.04193.x
- Mihm, M. J., Yu, F., Carnes, C. A., Reiser, P. J., McCarthy, P. M., Van Wagoner, D. R. and Bauer, J. A. (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104, 174-180 https://doi.org/10.1161/01.CIR.104.2.174
- Crow, J. P., Ye, Y. Z., Strong, M., Kirk, M., Barnes, S. and Beckman, J. S. (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 69, 1945-1953 https://doi.org/10.1046/j.1471-4159.1997.69051945.x
- Bachschmid, M., Thurau, S., Zou, M. H. and Ullrich, V. (2003) Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. FASEB J. 17, 914-916 https://doi.org/10.1096/fj.02-0530fje
Cited by
- Watching the watcher: regulation of p53 by mitochondria vol.5, pp.1, 2009, https://doi.org/10.2217/14796694.5.1.117
- Supplemental L-arginine and vitamins E and C preserve xanthine oxidase activity in the lung of broiler chickens grown under hypobaric hypoxia vol.93, pp.4, 2014, https://doi.org/10.3382/ps.2013-03698
- Mass Spectrometry Analysis of In Vitro Nitration of Carbonic Anhydrase II vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.709
- 3-Nitrotyrosine quantification methods: Current concepts and future challenges vol.125, 2016, https://doi.org/10.1016/j.biochi.2016.02.011
- Endogenous 3,4-Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine vol.9, pp.6, 2010, https://doi.org/10.1074/mcp.M900321-MCP200
- Nitrated Proteome in Human Embryonic Stem Cells vol.7, pp.4, 2016, https://doi.org/10.5478/MSL.2016.7.4.85
- Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays vol.12, pp.4, 2015, https://doi.org/10.1586/14789450.2015.1050384
- Proteomic Approaches to Analyze Protein Tyrosine Nitration vol.19, pp.11, 2013, https://doi.org/10.1089/ars.2012.5058
- Mass spectrometry analysis of nitrotyrosine-containing proteins vol.34, pp.4, 2015, https://doi.org/10.1002/mas.21413
- Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0126279
- Functional Aspects of Redox Control During Neuroinflammation vol.13, pp.2, 2010, https://doi.org/10.1089/ars.2009.2629
- Biochemical and histological evaluations of anti-inflammatory and antioxidant p-chloro-selenosteroid actions in acute murine models of inflammation vol.781, 2016, https://doi.org/10.1016/j.ejphar.2016.03.051
- Analysis of nitrated proteins inSaccharomyces cerevisiaeinvolved in mating signal transduction vol.15, pp.2-3, 2015, https://doi.org/10.1002/pmic.201400172
- Identification of tyrosine nitration in UCH-L1 and GAPDH vol.32, pp.13, 2011, https://doi.org/10.1002/elps.201100133
- Oxidative and Nitrosative Stress Markers in Patients on Hemodialysis and Peritoneal Dialysis vol.32, pp.3, 2011, https://doi.org/10.1159/000328030
- Diabetic Retinopathy Is Associated with Decreased Tyrosine Nitrosylation of Vitreous Interleukins IL-1α, IL-1β, and IL-7 vol.46, pp.4, 2011, https://doi.org/10.1159/000323812
- Effect of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress in cerebral cortex of rats vol.47, pp.4, 2009, https://doi.org/10.1016/j.fct.2009.01.004
- Oxidative stress markers in laparoscopic versus open colectomy for cancer: a double-blind randomized study vol.27, pp.7, 2013, https://doi.org/10.1007/s00464-013-2788-8
- Redox proteomics and drug development vol.74, pp.12, 2011, https://doi.org/10.1016/j.jprot.2011.01.001
- Identification of possible cigarette smoke constituents responsible for muscle catabolism vol.33, pp.3-4, 2012, https://doi.org/10.1007/s10974-012-9299-4
- Mass Spectrometry Analysis for Nitration of Proteins vol.33, pp.2, 2013, https://doi.org/10.7599/hmr.2013.33.2.110
- Enzyme immunoassay for detection of protein-bound nitrotyrosine in brain tissue and cerebrospinal fluid: Methodological issues vol.6, pp.3, 2012, https://doi.org/10.1134/S1819712412030063
- Pituitary Adenoma Nitroproteomics: Current Status and Perspectives vol.2013, 2013, https://doi.org/10.1155/2013/580710
- Computational study of the effects of protein tyrosine nitrations on the catalytic activity of human thymidylate synthase vol.27, pp.1, 2013, https://doi.org/10.1007/s10822-012-9624-4
- In Vitroandin VivoProtein-bound Tyrosine Nitration Characterized by Diagonal Chromatography vol.8, pp.12, 2009, https://doi.org/10.1074/mcp.M900259-MCP200
- Mass spectrometry and redox proteomics: Applications in disease vol.33, pp.4, 2014, https://doi.org/10.1002/mas.21374
- Proteases That Can Distinguish among Different Post-translational Forms of Tyrosine Engineered Using Multicolor Flow Cytometry vol.131, pp.50, 2009, https://doi.org/10.1021/ja907803k
- Alterations in connexin 43 during diabetic cardiomyopathy: Competition of tyrosine nitration versus phosphorylation 在糖尿病心肌病中间隙连接蛋白43的变化:酪氨酸硝化作用与磷酸化作用的竞争 vol.7, pp.2, 2015, https://doi.org/10.1111/1753-0407.12164
- Methotrexate administration induces differential and selective protein tyrosine nitration and cysteine nitrosylation in the subcellular organelles of the small intestinal mucosa of rats vol.251, 2016, https://doi.org/10.1016/j.cbi.2016.03.032
- Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis vol.32, pp.8, 2009, https://doi.org/10.1007/s12272-009-1802-0
- Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity vol.13, pp.1, 2010, https://doi.org/10.1097/MCO.0b013e328333b829
- Oxidative stress, protein modification and Alzheimer disease vol.133, 2017, https://doi.org/10.1016/j.brainresbull.2016.06.005
- Relevance of peroxynitrite formation and 3-nitrotyrosine on spermatozoa physiology vol.1, pp.4, 2016, https://doi.org/10.1016/j.pbj.2016.07.004